Пошаговое объяснение:
. Найдем первую производную функции:
у' = (х^3 - 27х^2 + 15)' = 3х^2 - 54х.
2. Приравняем эту производную к нулю и найдем нули функции:
3х^2 - 54х = 0;
х * (3х - 54) = 0;
х = 0;
3х - 54 = 0;
3х = 54;
х = 54 : 3;
х = 18.
3. Найдем значение производной, на отрезках (-∞ 0]; (0; 18]; (18; +∞):
у'(-1) = 3 * (-1)^2 - 54 * (-1) = 3 + 54 = 57 > 0;
у'(1) = 3 * 1^2 - 54 * 1 = 3 - 54 = -51 < 0;
у(19) = 3 * 19^2 - 54 * 19 = 1083 - 1026 = 57 > 0.
Производная при прохождении точки х = 18, меняет свой знак с минуса на плюс, это и будет точка минимума.
ответ: точка минимума х = 18.
1 пальма - 90 бананов, вторая 62
В первом ящике 17 апельсинов, во втором 25
Пошаговое объяснение:
Задача а
Примем количество бананов, которые собрали со второй пальмы за х
Тогда с первой х + 28
Составляем уравнение
х + х + 28 = 152
2х = 152 - 28
2х = 124
х = 124/2
х = 62 банана собрали со второй пальмы
62 + 28 = 90 бананов собрали с первой пальмы
Задача б
За х примем количество апельсинов во 2 ящике
Тогда в 1 - х - 8
Х + х - 8 = 42
2х = 42 + 8
2х = 50
х = 50/2
х = 25 - количество апельсинов во втором ящике
Тогда в первом 25 - 8 = 17