Функция определена и непрерывна на всей числовой прямой. Находим производную и решаем уравнение f'(x)=0 f'(x)=(1,5x²-30x+48lnx+4)'=3x-30+(48/x)=0 3x²-30x+48=0 |:3 x²-10x+16=0 D=(-10)²-4*16=100-64=36 x=(10-6)/2=2 x=(10+6)/2=8 Нашли критические точки. Отложим на числовой прямой найденные критические точки и определим знак производной на интервалах + - + (2)(8) При переходе через точку х=2 производная меняет знак с "+" на "-" следовательно в этой точке функция достигает максимума, а при переходе через точку х=8 с "-" на "+" значит в этой точке функция достигает минимума.
а) благоприятные варианты (1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5),(2,6),(3,1), (3,2), (3,3), (3,4),(3,5),(3,6),(4,1), (4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(6,1),(6,2),(6,3) Итого 30 вариантов. Р=30/36=5/6
б) благоприятные варианты (1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2),(3,3),(4,1), (4,2),(5,1),(6,1) Итого 17 вариантов Р=17/36
в) благоприятные варианты (3,3),(3,6),(6,3),(6,6) Итого 4 варианта Р=4/36=1/9