М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Irinad27
Irinad27
03.12.2021 03:15 •  Математика

Центр кола, вписаного у рівнобедрений трикутник, ділить висоту, проведену до основи на відрізки завдовжки 5см і 13см. Знайдіть периметр трикутника.

👇
Ответ:
Америя
Америя
03.12.2021

первый вариант

---

По т. Пифагора

ВЕ² = 13² - 5² = 169 - 25 = 144

ВЕ = 12 см

---

из подобия ΔОВЕ и ΔВНС (один угол общий, и один угол прямой)

коэффициент подобия

k = ВН/ВЕ = (13 + 5)/12 = 18/12 = 3/2

НС = k*OE = 3/2*5 = 15/2 = 7,5 см

ВС = k*ВО = 3/2*13 = 39/2 = 19,5 см

АС = 2*НС = 15 см

Периметр

15 + 19,5*2 = 15 + 39 = 54 см

4,8(40 оценок)
Открыть все ответы
Ответ:
Spectator10
Spectator10
03.12.2021

В решении.

Пошаговое объяснение:

55.

а) х - 12 < 0

x - 12 + 12 < 0 + 12

x < 12

Решение неравенства х∈(-∞; 12).

Неравенство строгое, скобка круглая, а у знаков бесконечности скобка всегда круглая.

На числовой прямой штриховка вправо от - бесконечности до 12.

г) х - 1/2 < 4

x - 0,5 < 4

x - 0,5 + 0,5 < 4 + 0,5

x < 4,5

Решение неравенства х∈(-∞; 4,5).

Неравенство строгое, скобка круглая, а у знаков бесконечности скобка всегда круглая.

На числовой прямой штриховка вправо от - бесконечности до 4,5.

ж) х - 4,2 >= 8

x - 4,2 + 4,2 >= 8 + 4,2

x >= 12,2

Решение неравенства х∈[12,2; +∞).

Неравенство нестрогое, скобка квадратная, а у знаков бесконечности скобка всегда круглая.

На числовой прямой штриховка вправо от 12,2 до + бесконечности.

56.

а) x + 4 <= 5

x + 4 - 4 <= 5 - 4

x <= 1

Решение неравенства х∈(-∞; 1].

Неравенство нестрогое, скобка квадратная, а у знаков бесконечности скобка всегда круглая.

На числовой прямой штриховка вправо от - бесконечности до 1.

г) у - 7 и 1/2 > -7

y - 7,5 > -7

y - 7,5 + 7,5 > -7 + 7,5

y > 0,5

Решение неравенства х∈(0,5; +∞).

Неравенство строгое, скобка круглая, а у знаков бесконечности скобка всегда круглая.

На числовой прямой штриховка вправо от 0,5 до +бесконечности.

ж) z - 4,5 <= -0,2

z - 4,5 + 4,5 <= -0,2 + 4,5

z <= 4,3

Решение неравенства х∈(-∞; 4,3].

Неравенство нестрогое, скобка квадратная, а у знаков бесконечности скобка всегда круглая.

На числовой прямой штриховка вправо от - бесконечности до 4,3.

4,4(79 оценок)
Ответ:
Maryan2609
Maryan2609
03.12.2021

В решении.

Пошаговое объяснение:

55.

а) х - 12 < 0

x - 12 + 12 < 0 + 12

x < 12

Решение неравенства х∈(-∞; 12).

Неравенство строгое, скобка круглая, а у знаков бесконечности скобка всегда круглая.

На числовой прямой штриховка вправо от - бесконечности до 12.

г) х - 1/2 < 4

x - 0,5 < 4

x - 0,5 + 0,5 < 4 + 0,5

x < 4,5

Решение неравенства х∈(-∞; 4,5).

Неравенство строгое, скобка круглая, а у знаков бесконечности скобка всегда круглая.

На числовой прямой штриховка вправо от - бесконечности до 4,5.

ж) х - 4,2 >= 8

x - 4,2 + 4,2 >= 8 + 4,2

x >= 12,2

Решение неравенства х∈[12,2; +∞).

Неравенство нестрогое, скобка квадратная, а у знаков бесконечности скобка всегда круглая.

На числовой прямой штриховка вправо от 12,2 до + бесконечности.

56.

а) x + 4 <= 5

x + 4 - 4 <= 5 - 4

x <= 1

Решение неравенства х∈(-∞; 1].

Неравенство нестрогое, скобка квадратная, а у знаков бесконечности скобка всегда круглая.

На числовой прямой штриховка вправо от - бесконечности до 1.

г) у - 7 и 1/2 > -7

y - 7,5 > -7

y - 7,5 + 7,5 > -7 + 7,5

y > 0,5

Решение неравенства х∈(0,5; +∞).

Неравенство строгое, скобка круглая, а у знаков бесконечности скобка всегда круглая.

На числовой прямой штриховка вправо от 0,5 до +бесконечности.

ж) z - 4,5 <= -0,2

z - 4,5 + 4,5 <= -0,2 + 4,5

z <= 4,3

Решение неравенства х∈(-∞; 4,3].

Неравенство нестрогое, скобка квадратная, а у знаков бесконечности скобка всегда круглая.

На числовой прямой штриховка вправо от - бесконечности до 4,3.

4,7(76 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ