М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
кхммммм
кхммммм
02.02.2022 19:19 •  Математика

Может ли в сложном предложении стоять восклицательный знак

👇
Ответ:
Настя16764631
Настя16764631
02.02.2022

Конечно может.

Пошаговое объяснение:

Например, возьмём такое сложное предложение

Моя мама получила премию, а папу наградили орденом!

4,6(74 оценок)
Ответ:
vasapipkin934
vasapipkin934
02.02.2022

ответ: Да, может

Пошаговое объяснение:

Восклицательный знак ставится в конце восклицательного предложения. Сложные предложение, такие же предложения, как и простые.

4,7(75 оценок)
Открыть все ответы
Ответ:
krohaela
krohaela
02.02.2022

непрерывная случайная величина в результате испытания может принимать значения на некотором интервале. непрерывная случайная величина считается заданной, если известен вид ее функции распределения вероятностей или функции плотности вероятности.

функцией распределения вероятностей случайной величины   называют функцию одной переменной f такую, что f(x)=p(x

свойства функции распределения.

1. для любого   значения функции распределения заключены в промежутке   .

2.   ;   .

3.   является неубывающей функцией.

4. вероятность попадания случайной величины x в интервал [x1,x2) вычисляют по формуле p(x1≤x

вероятность того, что непрерывная случайная величина x примет конкретное значение a, равно нулю, то есть p(x=a)=0 для любого числа a.

4,4(32 оценок)
Ответ:
DGOTVK
DGOTVK
02.02.2022

непрерывная случайная величина в результате испытания может принимать значения на некотором интервале. непрерывная случайная величина считается заданной, если известен вид ее функции распределения вероятностей или функции плотности вероятности.

функцией распределения вероятностей случайной величины   называют функцию одной переменной f такую, что f(x)=p(x

свойства функции распределения.

1. для любого   значения функции распределения заключены в промежутке   .

2.   ;   .

3.   является неубывающей функцией.

4. вероятность попадания случайной величины x в интервал [x1,x2) вычисляют по формуле p(x1≤x

вероятность того, что непрерывная случайная величина x примет конкретное значение a, равно нулю, то есть p(x=a)=0 для любого числа a.

4,4(31 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ