Алтын сақаның бас қаһарманы, идеялық нысанасы - халықтың арман-мұраты. Мұнда да халықтың аңсары ертегінің басты арқауы. Қазақ ертегілерінің бас қаһармандары аңшы-мерген, жауынгер-батыр, кенже бала, тазша бала, жалғыз бала және басқа әлеуметтік теңсіздіктегі бұқара өкілі. Бұлардың бәрі - халық арманынан әр кезде туған идеал кейіпкерлер. «Алтын сақадағы» бала сондай кейіпкер. Онда классикалық батырлық ертегіге тән белгілердің бәрі бар. Бала жұртта қалып қойған алтын сақасын алып келуге барып, жалмауыз кемпірге кез болған бала кемпірдің алдағанына сенбей, сақасын ат үстінен іліп алып, қаша жөнеледі. Мыстан кемпір тұра қуады. Осымен оқиға шиеленісе түседі. Бұл ертегіде де сайыста кейіпкер өз күшімен емес, керемет достарының арқасында жеңуі - батырлықтан гөрі қиял-ғажайып ертегінің заңдылықтарына жақындау.
Задание № 1:
Сколько цифр в записи значения произведения пятой степени числа 8 и семнадцатой степени числа 5?
8^5*5^17=(2^3)^5*5^17=2^15*5^17=2^15*5^15*5^2=10^15*25=25*10^15
проще говоря, 25 и еще 15 нулей или 17 цифр
ответ: 17
Задание № 2:
При каком значении параметра a пара уравнений равносильна?
1) ax−a+3−x=0;
2) ax−a−3−x=0.
равносильна - значит множества корней уравнений совпадают
первое:
ax-a+3-x=0
ax-x=a-3
(a-1)x=a-3
второе:
ax−a−3−x=0
ax−x=a+3
(a-1)x=a+3
если а=1, то оба уравнения не имеют корней: получим уравнение 0х=b, где b не ноль
если а<>1, то первое уравнение имеет корень (a-3)/(а-1), а второе (a+3)/(а-1). эти корни ни при каких а не совпадут
ответ: 1
Задание № 3:
Сколько целых неотрицательных решений имеет уравнение: 3x+4y=30?
чтобы было побыстрее заметим, что 4у должно делиться на 3
у=0: 3х=30; х=10 - ПОДХОДИТ
у=3: 3х+12=30; 3х=18; х=6 - ПОДХОДИТ
у=6: 3х+24=30; 3х=6; х=2 - ПОДХОДИТ
у=9: 3х+36=30; 3х=-6; х=-2 - НЕ ПОДХОДИТ (-2 не целое неотрицательное)
дальнейшие решения для х будет еще меньше
всего три решения
ответ: 3
Задание № 4:
В двух корзинах 79 яблок, причём 7/9 первой корзины составляют зелёные яблоки, а 9/17 второй корзины - красные яблоки. Сколько красных яблок во второй корзине?
получаем, что яблок в первой корзине делится на 9, а число яблок во второй корзине делится на 17
9х+17у=79
х=1: 9+17у=79; 17у=70; у не целое
х=2: 18+17у=79; 17у=61; у не целое
х=3: 27+17у=79; 17у=52; у не целое
х=4: 36+17у=79; 17у=43; у не целое
х=5: 45+17у=79; 17у=34; у=2
х=6: 54+17у=79; 17у=25; у не целое
х=7: 63+17у=79; 17у=16; у<1
значит в первой корзине 9*5=45 яблок, во второй - 17*2=34, (9/17)*34=18 красных яблок
ответ: 18
Задание № 5:
Периметр равнобедренного треугольника 20 см. Одна из его сторон вдвое больше другой. Найдите основание равнобедренного треугольника. Дайте ответ в сантиметрах.
если боковая сторона х, а основание 2х, то не выполняется неравенство треугольника (основание есть две боковые стороны)
значит основание х, боковая сторона 2х
х+2х+2х=20
5х=20
х=4
ответ: 4
Задание № 6:
В коробке 6 красных, 7 зелёных, 8 синих и 9 жёлтых карандашей. В темноте из коробки берут карандаши. Какое наименьшее число карандашей надо взять, чтобы среди них обязательно было 2 красных или 2 жёлтых карандаша?
худший случай: сначала вытащили все карандаши других цветов (7 зеленых + 8 синих = 15), затем по одному из подходящих цветов (1 красный + 1 желтый = 2), потом второй подходящего цвета
итого: 15+2+1=18
ответ: 18
Задание № 7:
Из посёлка в город идёт автобус, и каждые 10 минут он встречает автобус, который идёт из города в посёлок, и скорость которого в 2 раза больше. Сколько автобусов в час приходит из города в посёлок?
надо найти, как часто встречался бы встречный автобус, если этот автобус затормозил
наша скорость х
скорость встречного 2х
общая скорость 3х
при общей скорости 3х интервал времени 10 минут: L=3х*10
если наш автобус встал, то общая скорость равна скорости встречного 2х
при общей скорости 2х интервал времени = L/2x=3х*10/2x=15 минут
значит и в поселок автобус приходит каждые 15 минут, то есть 60мин/15мин = 4 автобуса в час
ответ: 4
45 умножить на2 равно 90км/ч(скорость машины)
45 умножить на 3 равно 135 км
90 умножить на 3 равно 270 км
135 плюс 270 равно 405 км
ответ 405км