Наименьшее значение подкоренное выражение достигает при а=0, оно равно 9, а корень из 9 равен трем, в то время как в числителе получаем 10, но 10/3 больше 3, а, значит, и подавно больше двух.
Если же а не равное нулю, то (а²+10)/√(а²+9)=((а²+9)+1)/√(а²+9)=
√(а²+9)+1/√(а²+9), только что доказали, что при а=0, получаем самое маленькое значение дроби, а если взять любое другое число, положительное, или отрицательное, то квадрат этого числа увеличит подкоренное выражение, и корень будет больше трех, а значит, и двух, да еще добавка в виде положительной дроби
1/√(а²+9) только добавит положительное число. Поэтому исходное выражение в задачи не будет меньше двух.
Решение :
1 дес. + (1*2) ед. = 1 дес. 2 ед. =12
2 дес. + (2*2) ед.= 2 дес. 4 ед. = 24
3 дес.+ (3*2) ед.= 3 дес. 6 ед. = 36
4 дес. + (4*2) ед. = 4 дес. 8 ед. =48
Далее идут не подходящие числа , т.к. число единиц, умноженное на 2 , больше десятка :
5 дес + (5*2) = 5 дес. + 10 ед = 6 дес. = 60 - не подходит
6 дес. + (6*2) ед. = 6 дес. + 12 ед. = 72 - не подходит
7 дес. + (7*2) ед. = 7 дес. + 14 ед.= 84 - не подходит
8 дес. + (8*2) ед= 8 дес. + 16 ед. = 96 - не подходит