Применим формулу косинуса двойного аргумента и приведём уравнение к стандартному виду: cos2x = 2cos²x - 1
cos³x - 3cosx - ( 2cos²x - 1 ) + 3 = 0cos³x - 3cosx - 2cos²x + 1 + 3 = 0cos³x - 2cos²x - 3cosx + 4 = 0Пусть cosx = a , |a| ≤ 1 , тогда а³ - 2а² - 3а + 4 = 0а³ - а² - а² + а - 4а + 4 = 0(а³ - а²) - (а² - а) - (4а - 4) = 0а²( а - 1 ) - а( а - 1 ) - 4( а - 1 ) = 0( а - 1 )( а² - а - 4 ) = 01) а - 1 = 0 ⇔ а = 1 ⇔ соsx = 1 ⇔ x = 2пn, n ∈ Z2) a² - a - 4 = 0 D = (-1)² - 4•(-4) = 1 + 16 = 17a₁ = ( 1 - √17 )/2 ≈ - 1,5 ⇒ ∅a₂ = ( 1 + √17 )/2 ≈ 2,5 ⇒ ∅ОТВЕТ: 2пn, n ∈ Z
1) В драматическом кружке занимаются (28:7)*4 = 4*4 = 16 девочек.
2) Возле школы (42:2)*3 = 21*3 = 63 дерева.
3) 5/12< 7/12; 8/9>4/9.
4) а) 7 дм3 = 7/1000 м3: б) 17 мин =17/1140 суток; в) 5 коп= 5/1200 от р.
5) Дробь будет правильной при т = 1 и т = 2.
ВАРИАНТ 2. К-7
1) Ширина прямоугольника (56:8)*7 = 7*7 = 49 см.
2) На олимпиаде было (48:3)*8 = 16*8 = 128 участников.
3) 8/15>4/15; 5/11< 6/11.
4) а) 19 га = 19/100 км2; б) 39ч = 39/168 недели; в) 37г= 37/5000 от 5 кг.
5) Дробь будет правильной при к = 4, к = 3 и к = 2.