4а^2 * (tg альфа) * (√ (1 - tg^2 альфа)
Пошаговое объяснение:
1) В полученном прямоугольном треугольнике диагональ призмы является гипотенузой, а диагональ боковой грани и сторона квадрата, который лежит в основании, - катетами.
2) Выражаем катет, являющийся стороной квадрата (обозначим его в), через а:
катет равен другому катету, умноженному на тангенс угла, противолежащего этому катету:
в = а * tg альфа.
3) Теперь в боковой грани находим высоту (обозначим её с):
с^2 (квадрат катета) = a^2 (квадрат гипотенузы) - (а * tg альфа)^2 (квадрат другого катета) ; отсюда c = a √ (1 - tg^2 альфа) .
4) Находим площадь боковой поверхности призмы (площадь одной грани умножить на 4):
4 * (а * tg альфа) * (a √ (1 - tg^2 альфа)) = 4а^2 * (tg альфа) * (√ (1 - tg^2 альфа)
Можно написать уравнение 4n-3=65 и решить его.
4n-3=65; 4n=68; n=17.
В условии задачу решали иначе. Пусть ПЕРЕД ПОСЛЕДНЕЙ ПОСТРОЙКОЙ было n домов. Тогда между ними был n-1 промежуток (их на единицу меньше чем домов). Эти промежутки заполнили новыми домами и домов стало (n)+(n-1) = 2n-1. То есть 65. 2n-1=65; 2n=66; n=33. Должно быть так, а не "делим пополам и округляем вверх" потому что это ниоткуда не следует. А теперь еще раз применяем это же рассуждение для числа 33 и по такой же схеме получаем 2n-1=33; 2n=34; n=17