ДАНО
Y = x³ - 6x² + 9x
1.Область определения D(x) - Х∈(-∞;+∞) - непрерывная.
Вертикальных асимптот - нет.
2. Пересечение с осью Х. Y= 0 Корни: х₁,₂ =3, х₃ = 0.
3. Пересечение с осью У. У(0) = 0.
4. Поведение на бесконечности.limY(-∞) = - ∞ limY(+∞) = +∞.
Горизонтальной асимптоты - нет.
5. Исследование на чётность.Y(-x) ≠ Y(x).
Функция ни чётная ни нечётная.
6. Производная функции.Y'(x)= 3*x² - 12*х+9 = 3*(х-1)*(х - 3).
Корни: х₁=1 , х₂ = 3.
7. Локальные экстремумы.
Максимум Ymax(11)= 4, минимум – Ymin(3)=0.
8. Интервалы монотонности.
Возрастает - Х∈(-∞;1)∪(3;+∞) , убывает = Х∈(1;3).
8. Вторая производная - Y"(x) = 6*(x - 2)=0.
Корень производной - точка перегиба Y"(2)= 2.
9. Выпуклая “горка» Х∈(-∞;2), Вогнутая – «ложка» Х∈(2;+∞).
10. Область значений Е(у) У∈(-∞;+∞)
11. Наклонная асимптота. Уравнение: lim(oo)(k*x+b – f(x).
k=lim(oo)Y(x)/x = ∞. Наклонной асимптоты - нет
12. График в приложении.
определение. линейным уравнением с двумя переменными называется уравнение вида
mx + ny = k, где m, n, k – числа, x, y – переменные.
пример: 5x+2y=10
определение. решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство.
уравнения с двумя переменными, имеющими одни и те же решения, называются равносильными.
1. 5x+2y=12 (2)y = -2.5x+6
данное уравнение может иметь сколько угодно решений. для этого достаточно взять любое значение x и найти соответствующее ему значение y.
пусть x = 2, y = -2.5•2+6 = 1
x = 4, y = -2.5•4+6 =- 4
пары чисел (2; 1); (4; -4) – решения уравнения (1).
данное уравнение имеет бесконечно много решений.