Дано: y1 = 1/3*x², y1 = 4 - 2/3*x²
Найти площадь фигуры.
Пошаговое объяснение:
Площадь - интеграл разности функций.
Рисунок к задаче в приложении.
График функции у1 - выше, чем у функции у2.
Находим точки пересечения - решаем квадратное уравнение разности функций.
- 2/3*x² + 4 = 1/3*x²
-x² + 4 = (2-x)*(2+x) = 0
b = 2 - верхний предел, a = - 2 - нижний предел.
Находим интеграл разности функций - пишем в обратном порядке.

Вычисляем
S(2)= 8 - 2 2/3 = 5 1/3
S(-2) = -8 + 2 2/3 = - 5 1/3
S = S(2) - S(-2) = 10 2/3 - площадь - ответ.
Рисунок к задаче в приложении.
Дано: y1 = 1/3*x², y1 = 4 - 2/3*x²
Найти площадь фигуры.
Пошаговое объяснение:
Площадь - интеграл разности функций.
Рисунок к задаче в приложении.
График функции у1 - выше, чем у функции у2.
Находим точки пересечения - решаем квадратное уравнение разности функций.
- 2/3*x² + 4 = 1/3*x²
-x² + 4 = (2-x)*(2+x) = 0
b = 2 - верхний предел, a = - 2 - нижний предел.
Находим интеграл разности функций - пишем в обратном порядке.

Вычисляем
S(2)= 8 - 2 2/3 = 5 1/3
S(-2) = -8 + 2 2/3 = - 5 1/3
S = S(2) - S(-2) = 10 2/3 - площадь - ответ.
Рисунок к задаче в приложении.
1. Найдем точки экстремума функции, т.е. точки, в которых y’ = 0:
y’ = (x4 – 8x2 + 5)’ = 4x3 – 16x.
4x3 – 16x = 0;
4х (х2 – 4) = 0;
4х (х – 2) (х + 2) = 0;
х1 = 0;
х2 = -2;
х3 = 2
ответ:1