М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Юлька9062804
Юлька9062804
15.03.2023 07:37 •  Математика

Утны туһа ова хатта
pusstrian momong mugs omtimu nusulan
amg'at shocomna tursions morgundaj
g​

👇
Ответ:
valetto
valetto
15.03.2023

тута тут

Пошаговое объяснение:

4,5(3 оценок)
Открыть все ответы
Ответ:
LERa007123
LERa007123
15.03.2023

ответ:Докажем от противного. Предположим, что никто не решил не более 4 задач. По условию количество учеников решивших по 2, по 3 и по 4 задач не менее одного. Так как по условию количество учащихся 14, то количество учеников решивших по 2, по 3 и по 4 задач не более 12 (=14-1-1). Введём обозначения:

x - количество решивших 2 задачи (1≤x≤12), y - количество решивших 3 задачи (1≤y≤12), z - количество решивших 4 задачи (1≤z≤12).

По условию количество учащихся 14, то есть x+y+z=14.

Главное условие задачи: все ученики вместе решили 58 задач, и поэтому должен быть справедливо равенство

2·x+3·y+4·z=58

для некоторых значений x, y и z.

Так как все числа натуральные, то наибольшее значение выражение получим, если z принимает наибольшее значение, то есть z=12. Но тогда x=1, y=1 и:

2·1+3·1+4·12=2+3+48=53<58.

Последнее противоречить главному условию задачи.

Отсюда следует, что некоторые из участников олимпиады решили не менее 5 задач.

Найдём количество учеников решивших определённое количество задач.

Пусть теперь x - количество решивших 2 задачи (1≤x≤11), y - количество решивших 3 задачи (1≤y≤11), z - количество решивших 4 задачи (1≤z≤11), t - количество решивших 5 задач (1≤t≤11).

По условию количество учащихся 14, то есть x+y+z+t=14.

Главное условие задачи: все ученики вместе решили 58 задач, и поэтому должен быть справедливо равенство

2·x+3·y+4·z+5·t=58

для некоторых значений x, y, z и t.

Если x=3, y=1, z=1 и t=9, то получаем нужный результат:

2·3+3·1+4·1+5·9=58!

Пошаговое объяснение:

4,8(55 оценок)
Ответ:
toper55
toper55
15.03.2023
Если при делении порядкового номера места на 4 получается целое число, то это место находится в купе, номер которого равен получившемуся числу. Если же при делении получается неполное частное, то номер купе будет на 1 (единицу) больше, чем это неполное частное.
1) 21:4=5 (ост.1)21-ое место находится в 6-ом купе
2) 15:4=3 (ост.3)15-ое место находится в 4-ом купе
3) 28:4=728-ое место находится в 7-ом купе
4) 18:4=4 (ост.2)18-ое место находится в 5-ом купе
5) 26:4=6 (ост.2)26-ое место находится в 7-ом купе, остальные номера мест в этом купе 25, 27 и 28.
4,6(71 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ