Нужно найти такие два натуральных (целых) числа, отношение которых равно отношению двух дробных чисел в задании.
Первый решения: Отношение- это по сути деление одного числа на другое. Выполним это деление, сократив получившуюся дробь:
Конечно, можно подобрать сколько угодно много пар целых чисел, имеющих то же отношение, что и исходные дроби. Но, существует только одна минимальная пара таких чисел, и мы её получили сокращая дробь (теперь в числителе и знаменателе- взаимно простые числа).
Второй решения (для тех, кто любит повозиться): Умножим обе дроби на наименьшее общее кратное (НОК) их знаменателей. При этом отношение не изменится, зато вместо дробей мы получим целые числа.
Разложим на простые множители оба знаменателя: 18 = 2 * 9 = 2 * 3 * 3 12 = 2 * 6 = 2 * 2 * 3 Берём каждый простой множитель в максимальном количестве, которое встретилось в разложении одного из знаменателей. НОК (18,12) = 2 * 2 * 3 * 3 = 36 Теперь умножаем на 36 обе дроби в отношении, сокращаем дроби, и получаем отношение целых чисел:
В данной ситуации следует применять положения статьи 72 Трудового Кодекса. Согласно ст. 72.1 Запрещается переводить и перемещать работника на работу, противопоказанную ему по состоянию здоровья. Согласно статье 72.2 администрация предприятия имеет право в случае аварийной ситуации перевести на срок до одного месяца работника без его согласия на другую работу, необходимую для предотвращения порчи имущества. Однако, даже в этом случае, согласно той же статье перевод на другую работу требующую более низкой квалификации допускается только с письменного согласия работника. Таким образом, действия директора были не правомочны и суд вероятно отменит выговор.
Первый решения:
Отношение- это по сути деление одного числа на другое. Выполним это деление, сократив получившуюся дробь:
Конечно, можно подобрать сколько угодно много пар целых чисел, имеющих то же отношение, что и исходные дроби. Но, существует только одна минимальная пара таких чисел, и мы её получили сокращая дробь (теперь в числителе и знаменателе- взаимно простые числа).
Второй решения (для тех, кто любит повозиться):
Умножим обе дроби на наименьшее общее кратное (НОК) их знаменателей. При этом отношение не изменится, зато вместо дробей мы получим целые числа.
Разложим на простые множители оба знаменателя:
18 = 2 * 9 = 2 * 3 * 3
12 = 2 * 6 = 2 * 2 * 3
Берём каждый простой множитель в максимальном количестве, которое встретилось в разложении одного из знаменателей.
НОК (18,12) = 2 * 2 * 3 * 3 = 36
Теперь умножаем на 36 обе дроби в отношении, сокращаем дроби, и получаем отношение целых чисел: