М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
facss
facss
07.10.2020 07:05 •  Математика

Разность 2 чисел равна одному. Найдите эти числа, если 40% большего из них равна 3/7 меньшего. Математика 6 кл.

👇
Ответ:
nadia0666p08frk
nadia0666p08frk
07.10.2020

Y=14

X=15

Пошаговое объяснение:

x-y=1

0,4*x=(3/7)*y    x=(7,5/7)*y

(15/14)*y-y=1

(1/14)*y=1

Y=14

X=15

4,6(86 оценок)
Открыть все ответы
Ответ:
green121
green121
07.10.2020
Среднее арифметическое набора чисел определяется как их сумма, деленная на их количество. То есть сумма всех чисел набора делится на количество чисел в этом наборе.

Наиболее простой случай - найти среднее арифметическое двух чисел x1 и x2. Тогда их среднее арифметическое X = (x1+x2)/2. Например, X = (6+2)/2 = 4 - среднее арифметическое чисел 6 и 2.
2
Общая формула для нахождения среднего арифметического n чисел будет выглядеть так: X = (x1+x2+...+xn)/n. Ее можно также записать в виде: X = (1/n)Σxi, где суммирование ведется по индексу i от i = 1 до i = n.

К примеру, среднее арифметическое трех чисел X = (x1+x2+x3)/3, пяти чисел - (x1+x2+x3+x4+x5)/5.
3
Интерес представляет ситуация, когда набор чисел представляет собой члены арифметической прогрессии. Как известно, члены арифметической прогрессии равны a1+(n-1)d, где d - шаг прогрессии, а n - номер члена прогрессии.

Пусть a1, a1+d, a1+2d,...a1+(n-1)d - члены арифметической прогрессии. Их среднее арифметическое равно S = (a1+a1+d+a1+2d+...+a1+(n-1)d)/n = (na1+d+2d+...+(n-1)d)/n = a1+(d+2d+...+(n-2)d+(n-1)d)/n = a1+(d+2d+...+dn-d+dn-2d)/n = a1+(n*d*(n-1)/2)/n = a1+dn/2 = (2a1+d(n-1))/2 = (a1+an)/2. Таким образом среднее арифметическое членов арифметической прогрессии равно среднему арифметическому его первого и последнего членов.
4
Также справедливо свойство, что каждый член арифметической прогрессии равен среднему арифметическому предыдущего и последующего члена прогрессии: an = (a(n-1)+a(n+1))/2, где a(n-1), an, a(n+1) - идущие друг за другом члены последовательности.
4,6(88 оценок)
Ответ:
eva272727
eva272727
07.10.2020

1) Для любого х из множества действительных чисел существует у, меньше х такие, что значение функции в точке у равно нулю.

2) Для любого х из множества действительных чисел, значение эф от икс равно нулю существует у, меньше х и значение функции в точке у равно нулю.

3)Для любого х из множества действительных чисел,из того, что  значение эф от икс равно нулю, следует, что икс больше нуля.

4) Для любого х из множества действительных чисел, таких, что если икс положительно, то эф от икс равно нулю.

5) Существует х из множества действительных чисел, такое, что для любого у из множества действительных чисел, при котором у меньше икс и из этого следует, что  значение эф от игрек равно нулю.

6)из того, что существует действительные а и b такие, а меньше b, для любого х  больше а, но  меньше b, следует то, что значение функции в точке икс равно нулю.

7) Для любых а и b из множества действит. чисел , таких  что а меньше b, следует  что существует х, больше а, но меньше b, что эф от икс равно нулю.

8) Для любых x 1 ,..., xn из множества действительных существyет у из множества действительных чисел без множества  { x1,...,xn } таких, что значение эф от у равно нулю. (эн - очевидно, натуральное.)

9)Для любого натурального n  и набора x1,...,xn из множества действительных существует у из множества действит. без {x1,...,xn} такие что значение эф в точке у равно нулю.

10) для любых действительных x и y значение функции ( f (x)равно нулю  0 и g (y) =0 и из этого следует , что х меньше у.

11) Из того, что для любых действительных x и y, для которых значение  x меньше значения y и и значение функции эф от икс равно 0 и и эф от у равно нулю следует, что существует действительное z болше х, но меньше у, и  значение функции  g (z) равно нулю.

4,5(2 оценок)
Новые ответы от MOGZ: Математика
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ