Например, это могут быть числа: 121; 151.
Пошаговое объяснение:
Требуется найти число больше 100, которое при делении на 2, на 3, на 5 дает в остатке 1.
Найдем наименьшее общее кратное чисел 2, 3, 5.
Так как это простые числа, т.е. они делятся только на 1 и на самих себя, то НОК (2,3,5) = 2*3*5 = 30.
Тогда все числа вида 30n делятся на 2, на 3 и на 5 без остатка, а все числа вида 30n + 1 при делении на 2, на 3, на 5 дадут в остатке 1, где n ∈ Z (n - целое число).
По условию число должно быть больше 100:
30n + 1 > 100; 30n > 99; n >3,3.
⇒ все числа вида 30n + 1 , n ∈ Z, n ≥ 4 при делении на 2, на 3, на 5 дадут в остатке 1 и будут больше 100.
Например:
n = 4, 4 * 30 + 1 = 121
121 : 2 = 60 (ост. 1)
121 : 3 = 40 (ост. 1)
121 : 5 = 24 (ост. 1).
Или
n = 5, 30 * 5 + 1 = 151
151 : 2 = 75 (ост. 1 )
151 : 3 = 50 (ост. 1 )
151 : 5 = 30 (ост. 1 ).
Наименьшее возможное число студентов, так и не сдавших зачет - 32 человека. При этом, первоначально было 242 студента.
Пошаговое объяснение:
Из условия следует, что каждый раз на зачет приходит такое количество студентов, что если к нему добавить еще одного студента, то полученное число делится на три. Тогда:
1 зачет – пришло число студентов А
2 зачет – пришло студентов В, где В связано с А уравнением: В+1 = (2/3) (А+1)
3 зачет – пришло студентов С, где С связано с В уравнением: С+ 1= (2/3)(В+1)
4 зачет – пришло студентов D, где D связано с С уравнением: D+1 = (2/3) (С+1)
5 зачет – пришло студентов Е, где Е связано с D уравнением: E+1 = (2/3) (D+1)
Осталось после 5 подхода студентов F, где F связано с D уравнением F+1= (2/3) (E+1)
Преобразовываем уравнения к виду:
A+1 = (3/2) (B+1) (1)
B+1 = (3/2) (C+1) (2)
C+1 = (3/2) (D+1) (3)
D+1= (3/2) (E+1) (4)
Е+1 = (3/2) (F+1) (5)
И подставляем последовательно уравнения друг в друга, начиная с уравнения (5), получаем:
А+1 = (3/2)^5*(F+1).
Отсюда: А = (243/32)(F+1) – 1 (6)
Уравнение (6) связывает число студентов пришедших на зачет в первый раз (А) с числом студентов, оставшихся после 5 пересдачи (F). Из уравнения (6) видно, что первое целочисленное значение А будет при (F+1) = 32, т.е.
F = 31 и А = 242
В более общем случае можно видеть, что для к подходов для сдачи зачета ответ будет: А=(3/2)^к * (Aк+1) – 1 (для 5 пересдач в нашей задаче, Ак = F и к=5)
Например, для 6 пересдач получим А=(729/64)(А6+1) – 1 и, таким образом А6=63 и А=728.
64
Пошаговое объяснение:
88/11*8=64