М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vadyushasergee2
vadyushasergee2
17.04.2023 00:06 •  Математика

На рисунке изображен график функции y=f(x). Прямая, проходящая через точку (-2;4), касается этого графика в точке с абсциссой 2. найдите f'(2)


На рисунке изображен график функции y=f(x). Прямая, проходящая через точку (-2;4), касается этого г

👇
Открыть все ответы
Ответ:
arinapes30
arinapes30
17.04.2023

\arcsin(0.48)

Будем вычислять значение данного выражения с формулы:

f(x_{0} + ∆x) \approx f(x_{0}) + d[f(x_{0})]

Составим функцию f(x):

f(x) = \arcsin(x)

По условию нам нужно вычислить значение данной функции в точке 0.48.

Смотрим на левую часть формулы:

f(x_{0} + ∆x)

В качестве х₀ выбираем число, arcsin которого мы можем вычислить и которое находится близко к числу 0.48. Таким числом является 0.5, ведь оно ближе всего к 0.5, и его arcsin:

\arcsin(0.5) = \frac{\pi}{6}

Поэтому х₀ = 0.5. Следовательно ∆х = 0.48 - 0.5 = -0.02.

Что мы получили:

f(x_{0} + ∆x) = f(0.5 - 0.02)

Далее работаем с правой частью формулы:

f(x_{0}) + d[f(x_{0})]

Сначала вычислим значение функции в точке х₀. Собственно мы это сделали ранее:

f(x_{0}) = f(0.5) = \arcsin(0.5) = \frac{\pi}{6}

Дифференциал в точке х₀ найдём по формуле:

d[f(x_{0})] = f'(x_{0})∆x

Берём производную от нашей функции:

f'(x) = ( \arcsin(x))' = \frac{1}{ \sqrt{1 - {x}^{2} } }

Находим её значение в точке х₀:

f'(x_{0}) = f'(0.5) = \frac{1}{ \sqrt{1 - {0.5}^{2} } } = \frac{1}{ \sqrt{ \frac{3}{4} } } = \sqrt{ \frac{4}{3} } = \frac{2 }{ \sqrt{3} } = \frac{2 \sqrt{3} }{3}

Таким образом:

d[f(x_{0})] = \frac{2 \sqrt{3} }{3} \times ( - 0.02) = - \frac{4 \sqrt{3} }{3 \times 100} = - \frac{ \sqrt{3} }{75}

Итого:

f(0.48) = \arcsin(0.48) \approx \frac{\pi}{6} + ( - \frac{ \sqrt{3} }{75} ) = \frac{\pi}{6} - \frac{ \sqrt{3} }{75}

Вычислим окончательное приближенное значение:

\pi \approx 3.14, \: \sqrt{3} \approx 1.73

\frac{\pi}{6} - \frac{ \sqrt{3} }{75} = \frac{1}{150} (25\pi - 2 \sqrt{3} ) = \frac{1}{150} (78.5 - 3.46) = \frac{75.04}{150} = \frac{938}{1875} \approx 0.5003

ответ: arcsin(0.48) ≈ 0.5003

4,4(12 оценок)
Ответ:
alapova1
alapova1
17.04.2023

99,95

Пошаговое объясне

12*13-10,36-0,69-45

ПОНИМЕ Аниме                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ГУСЬ ЛЕБЕДЯ ГГ
4,4(85 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ