В каждой группе четыре вопроса. Положительный ответ требуется в случае более половины, то есть 3 вопроса минимум (то есть три или четыре вопроса должны быть отвечены верно)
Вероятность (3 вопроса первой группы правильно как минимум ) =
0,8*0,8*0,8*0,8 (все четыре правильно) + 0,8*0,8*0,8*0,2 +0,8*0,8*0,2*0,8+0,8*0,2*0,8*0,8+0,2*0,8*0,8*0,8 (только три верны и один не верен) = 0,7168
Вероятность (3 вопроса второй группы правильно как минимум ) =
0,6*0,6*0,6*0,6 (все четыре правильно) + 0,6*0,6*0,6*0,4 + 0,6*0,6*0,4*0,6 + 0,6*0,4*0,6*0,6 + 0,4*0,6*0,6*0,6 (только три верны и один не верен) = 0,3888
Вероятность приёма на работу = вероятность случая, если как минимум три вопроса будут отвечены правильно в обоих частях сразу, то есть
Х - за столько дней завод выполнил работу (х + 1) - за столько дней завод должен был выполнить работу , по условию задачи имеем : 180 / х - 180 / (х +1) = 2 , Умножим левую и правую часть уравнения на х(х + 1) . Получим : 180(х + 1) - 180х = 2 *х (х +1) 180х + 180 - 180х = 2х^2 + 2х 2х^2 + 2х -180 = 0 x^2 +x -90 = 0 найдем дискриминант уравнения : D = 1^2 - 4 *1 *(-90) = 361 Корень квадратный из дискриминанта равен : 19 .Найдем корни уравнения : 1-ый = (-1 + 19) / 2*1 = 18/2 = 9 дней , 2-ой = (-1 - 19)/2*1 = -20/20= -10 . Второй корень не подходит так как количество дней не может быть меньше 0 ответ : Завод выполнил план за 9 дней
Скорее всего не примут
Пошаговое объяснение:
Ну и как тут график строить.
В каждой группе четыре вопроса. Положительный ответ требуется в случае более половины, то есть 3 вопроса минимум (то есть три или четыре вопроса должны быть отвечены верно)
Вероятность (3 вопроса первой группы правильно как минимум ) =
0,8*0,8*0,8*0,8 (все четыре правильно) + 0,8*0,8*0,8*0,2 +0,8*0,8*0,2*0,8+0,8*0,2*0,8*0,8+0,2*0,8*0,8*0,8 (только три верны и один не верен) = 0,7168
Вероятность (3 вопроса второй группы правильно как минимум ) =
0,6*0,6*0,6*0,6 (все четыре правильно) + 0,6*0,6*0,6*0,4 + 0,6*0,6*0,4*0,6 + 0,6*0,4*0,6*0,6 + 0,4*0,6*0,6*0,6 (только три верны и один не верен) = 0,3888
Вероятность приёма на работу = вероятность случая, если как минимум три вопроса будут отвечены правильно в обоих частях сразу, то есть
0,7168 X 0,3888