Разделив обе части уравнения на произведение y*sin(x), получим уравнение dy/y=cos(x)*dx/sin(x). Так как cos(x)*dx=d[sin(x)], то это уравнение можно записать в виде dy/y=d[sin(x)]/sin(x). Интегрируя обе части, получаем ln/y/=ln/sin(x)/+ln/C/, где C - произвольная, но не равная нулю, постоянная. Отсюда y=C*sin(x). Проверка: dy=C*cos(x)*dx, sin(x)*dy=C*sin(x)*cos(x)*dx=C*sin(x)*cos(x)*dx - уравнение решено верно.
Дано уравнение кривой : 1. Определить тип кривой. 2. Привести уравнение к каноническому виду и построить кривую в исходной системе координат. 3. Найти соответствующие преобразования координат. Решение. Приводим квадратичную форму B = y2 к главным осям, то есть к каноническому виду. Матрица этой квадратичной формы:точки ↓ B= Находим собственные числа и собственные векторы этой матрицы: (0 - z)x1 + 0y1 = 0 0x1 + (1 - z)y1 = 0 Характеристическое уравнение: Характеристическое уравнение: 0 - λ ;0 = 0 ;1 - λ= D = (-1)2 - 4 • 1 • 0 = 1 x1=1 x2=0 Исходное уравнение определяет параболу (λ2 = 0) Вид квадратичной формы: y2 Выделяем полные квадраты: для y1: (y12-2•3y1 + 32) -1•32 = (y1-3)2-9 Преобразуем исходное уравнение: (y1-3)2 = 16x -16 Получили уравнение параболы: (y - y0)2 = 2p(x - x0) Ветви параболы направлены вправо, вершина расположена в точке (x0, y0), т.е. в точке (1;3) Параметр p = 8 Координаты фокуса: F= Уравнение директрисы: x = x0 - p/2 x = 1 - 4 = -3
ответ: y=C*sin(x), где C≠0.
Пошаговое объяснение:
Разделив обе части уравнения на произведение y*sin(x), получим уравнение dy/y=cos(x)*dx/sin(x). Так как cos(x)*dx=d[sin(x)], то это уравнение можно записать в виде dy/y=d[sin(x)]/sin(x). Интегрируя обе части, получаем ln/y/=ln/sin(x)/+ln/C/, где C - произвольная, но не равная нулю, постоянная. Отсюда y=C*sin(x). Проверка: dy=C*cos(x)*dx, sin(x)*dy=C*sin(x)*cos(x)*dx=C*sin(x)*cos(x)*dx - уравнение решено верно.