М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
mizery1
mizery1
28.01.2021 05:19 •  Математика

Вычислить интеграл
номер 375 (1)​


Вычислить интегралномер 375 (1)​

👇
Ответ:
Айзат121а
Айзат121а
28.01.2021
374] 6.25
375] 21
(+- 1 сотая в ответах)
4,8(91 оценок)
Открыть все ответы
Ответ:
нури43
нури43
28.01.2021

В решении.

Пошаговое объяснение:

Как сделать:

тесьмой или верёвочкой, шнурком измерить длину окружности предмета; при линейки определить длину этой окружности в см; линейкой измерить диаметр указанного предмета. Потом первое число разделить на второе, занести все измерения и результаты вычислений в таблицу.

                    Длина окружности С         Длина d          С : d

Бокал                       27 см                           8,6 см           ≈ 3,14

Крышка от крема   20,1 см                        6,4 см           ≈ 3,14

Тарелка                    28,3 см                        9 см             ≈ 3,14

4,6(51 оценок)
Ответ:
jkh40949
jkh40949
28.01.2021

Задание. Найти производную функции y = \left(\sqrt{x}\right)^{\arcsin x}.

Решение. Задана функция вида y = \left(f(x) \right)^{g(x)}.

Для нахождения производной данной функции выполняют следующие этапы:

1. Прологарифмировать обе части данного равенства по основанию e\colon

\ln y = \ln \left(\sqrt{x} \right)^{\arcsin x}.

2. По свойству логарифмов \log_{a}b^{p} = p\log_{a}b имеем:

\ln y = \arcsin x \cdot \ln \left\sqrt{x} .

3. Найти производную двух частей равенства по переменной x \colon

(\ln y)' = (\arcsin x \cdot \ln \left\sqrt{x})'.

3.1. Используя (\ln u) = \dfrac{1}{u} \cdot u', имеем:

(\ln y)' = \dfrac{1}{y} \cdot y' = \dfrac{y'}{y} .

3.2. Используя правило (u \cdot v)' = u'v + uv', имеем:

(\arcsin x)' \cdot \ln \sqrt{x} + \arcsin x \cdot (\ln \sqrt{x})'.

3.2.1. Используя   \arcsin x = \dfrac{1}{\sqrt{1 - x^{2}}} и (\ln u)' = \dfrac{1}{u} \cdot u', имеем:

\dfrac{1}{\sqrt{1 - x^{2}}} \cdot \ln \sqrt{x} + \arcsin x \cdot \dfrac{1}{\sqrt{x}} \cdot (\sqrt{x})'.

3.2.2. Используя (\sqrt{x})' = \dfrac{1}{2\sqrt{x}}, имеем:

\dfrac{\ln \sqrt{x}}{\sqrt{1 - x^{2}}} + \dfrac{\arcsin x}{\sqrt{x}} \cdot \dfrac{1}{2\sqrt{x}} .

3.2.3. Упросим выражение и получаем:

\dfrac{\ln \sqrt{x}}{\sqrt{1 - x^{2}}} + \dfrac{\arcsin x}{2x}.

3.3. Имеем:

\dfrac{y'}{y} =\dfrac{\ln \sqrt{x}}{\sqrt{1 - x^{2}}} + \dfrac{\arcsin x}{2x}.

4. Умножим обе части равенства на y \colon

y' = \left(\dfrac{\ln \sqrt{x}}{\sqrt{1 - x^{2}}} + \dfrac{\arcsin x}{2x}\right) \cdot y.

5. Поскольку из условия y = \left(\sqrt{x}\right)^{\arcsin x}, то:

y' = \left(\dfrac{\ln \sqrt{x}}{\sqrt{1 - x^{2}}} + \dfrac{\arcsin x}{2x}\right) \cdot \left(\sqrt{x}\right)^{\arcsin x}.

ответ: y' = \left(\dfrac{\ln \sqrt{x}}{\sqrt{1 - x^{2}}} + \dfrac{\arcsin x}{2x}\right) \cdot \left(\sqrt{x}\right)^{\arcsin x}.

4,5(55 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ