ООО «Спутник » выполняет на заказ работы по цене 20 000 руб. Переменные издержки на выполнение одного заказа составляют – 10 200 руб. Количество заказов составляет - 35 шт. Постоянные издержки - 97 500 руб. Фирма порог рентабельности. Поступает предложение дополнительно выполнить 5 работ по цене 12 000 руб. Определить имеет ли фирма риски выполнения дополнительного заказа кто может решить
Конечная десятичная дробь
Десятичная дробь называется конечной, если она содержит конечное число цифр после запятой (в частности, ни одного), то есть имеет вид
\pm a_0,a_1 a_2 \ldots a_nВ соответствии с определением эта дробь представляет число
\pm \sum_{k=0}^{n} a_k \cdot 10^{-k}Легко видеть, что это число можно представить в виде обыкновенной дроби вида p/10^{s}, знаменатель которой является степенью десятки. Обратно, любое число вида p/10^{s}, где p — целое, а s — целое неотрицательное, можно записать в виде конечной десятичной дроби.
Если обыкновенную дробь p/10^{s} привести к несократимому виду, ее знаменатель будет иметь вид 2^{m} 5^{n}. Таким образом, имеет место следующая теорема о представимости действительных чисел в виде конечных десятичных дробей.
Теорема. Действительное число представимо в виде конечной десятичной дроби тогда и только тогда, когда оно является рациональным и при записи его несократимой дробью p/q знаменатель q не имеет простых делителей, отличных от 2 и 5.
Бесконечная десятичная дробь
\pm a_0, a_{1} a_{2} \ldotsпредставляет, согласно определению, действительное число
\pm \sum_{k=0}^{\infty} a_k \cdot 10^{-k}Этот ряд сходится, каковы бы ни были целое неотрицательное a_0 и десятичные цифры a_1, a_2, \ldots. Это предложение вытекает из того факта, что данный ряд мажорируется сходящимся рядом
a_0 + \sum_{k=1}^{\infty} 9 \cdot 10^{-k}