f'(x) = -2sin2x + 6x
Пошаговое объяснение:
Квадрат я обозначу ^, т.к. ' - обычно знак производной.
Производная суммы равна сумме производных слагаемых. То есть f'(x) = (cos2x)' + (3x^2)' + (9)' .
Производная косинуса равна минус синус, при этом cos2x - сложная функция, для вычисления производной сложной функции нужно вычислить производную самой функции (-sin2x) и умножить на производную аргумента ((2x)'=2). Таким образом (cos2x)' = -2sin2x
Производная х^2 равна 2х (х^n=n*x^(n-1)). Производная произведения числа на переменную равна произведению числа и производной переменной. Таким образом (3x^2)' = 6х.
Производная числа равна 0.
Получаем f'(x) = (cos2x)' + (3x^2)' + (9)'
f'(x) = -2sin2x + 6x
Определите, является ли функция F(x) = x^2−sin2x−1 первообразной для функции f(x)=2x-2cos2x?
F'(x) = (x^2)'−(sin2x)'−(1)'=2x-2cos2x
F'(x)=f(x) ответ : является первообразной
Пошаговое объяснение: