Размещения A(m,n)=n!/(n−m)!, где n=6 - общее количество чисел, m=4 - число чисел в выборке.
Находим:
d1=A(4,6)=6!/(6−4)!=3∗4∗5∗6=360
Числа не могут начинаться с 0, т.е. это количество чисел (начинающихся с 0) нужно вычесть из полученного количества. Первая цифра этих четырехзначных чисел известна - 0, а остальное количество чисел находим по формуле Размещения, где n=5, m=3, т.к. одна цифра (0) уже использована
d2=5!/2!=3∗4∗5=60
Получили, что количество четырехзначных чисел равно D=d1−d2=360−60=300
1) Для любого х из множества действительных чисел существует у, меньше х такие, что значение функции в точке у равно нулю.
2) Для любого х из множества действительных чисел, значение эф от икс равно нулю существует у, меньше х и значение функции в точке у равно нулю.
3)Для любого х из множества действительных чисел,из того, что значение эф от икс равно нулю, следует, что икс больше нуля.
4) Для любого х из множества действительных чисел, таких, что если икс положительно, то эф от икс равно нулю.
5) Существует х из множества действительных чисел, такое, что для любого у из множества действительных чисел, при котором у меньше икс и из этого следует, что значение эф от игрек равно нулю.
6)из того, что существует действительные а и b такие, а меньше b, для любого х больше а, но меньше b, следует то, что значение функции в точке икс равно нулю.
7) Для любых а и b из множества действит. чисел , таких что а меньше b, следует что существует х, больше а, но меньше b, что эф от икс равно нулю.
8) Для любых x 1 ,..., xn из множества действительных существyет у из множества действительных чисел без множества { x1,...,xn } таких, что значение эф от у равно нулю. (эн - очевидно, натуральное.)
9)Для любого натурального n и набора x1,...,xn из множества действительных существует у из множества действит. без {x1,...,xn} такие что значение эф в точке у равно нулю.
10) для любых действительных x и y значение функции ( f (x)равно нулю 0 и g (y) =0 и из этого следует , что х меньше у.
11) Из того, что для любых действительных x и y, для которых значение x меньше значения y и и значение функции эф от икс равно 0 и и эф от у равно нулю следует, что существует действительное z болше х, но меньше у, и значение функции g (z) равно нулю.
Синусом острого угла в прямоугольном треугольнике является отношение противолежащего катета на гипотенузу.
Мы знаем синус острого угла,знаем один из катетов ,нужно найти гипотенузу-подставляем в формулу и находим гипотенузу 14