Пошаговое объяснение:
а)
А - событие, состоящее в том, что только один стрелок попадет в цель
А1 - событие, состоящее в том, что первый попадет
А2 - событие, состоящее в том, что второй попадет
А3 - событие, состоящее в том, что третий попадет
А=А1*(А2_)*(А3_)+(А1_)*А2*(А3_)+(А1_)*(А2_)*А3
Р (А) =Р (А1)*Р (А2_)*Р (А3_)+Р (А1_)*Р (А2)*Р (А3_)+Р (А1_)*Р (А2_)*Р (А3)
Р (А) =0.9*0.2*0.3+0.1*0.8*0.3+0.1*0.2*0.7
б)
А - событие, состоящее в том, что только два стрелкв попадут в цель
А1 - событие, состоящее в том, что первый попадет
А2 - событие, состоящее в том, что второй попадет
А3 - событие, состоящее в том, что третий попадет
А=А1*(А2)*(А3_)+(А1)*А2*(А3_)+(А1_)*(А2)*А3
Р (А) =Р (А1)*Р (А2_)*Р (А3)+Р (А1)*Р (А2)*Р (А3_)+Р (А1_)*Р (А2)*Р (А3)
Р (А) =0.9*0.2*0.7+0.9*0.8*0.3+0.1*0.8*0.7
в)
А - событие, состоящее в том, что твсе попадут в цель
А1 - событие, состоящее в том, что первый попадет
А2 - событие, состоящее в том, что второй попадет
А3 - событие, состоящее в том, что третий попадет
А=А1*А2*А3
Р (А) =Р (А1)*Р (А2)*Р (А3)
Р (А) =0.9*0.8*0.7
Да
Пошаговое объяснение:
Рассмотрим более общую постановку задачи: существуют ли такие действительные числа x,y,z, что x+y+z=A и xyz=B, где А и В - действительные числа?
1) В≠0 => z≠0 => условия равносильны системе x+y=A-z, xy=B/z.
А задача о существовании действительных решений такой системы равносильна задаче о существовании действительных корней квадратного уравнения t²-(A-z)t+B/z=0.
Корни существуют, если дискриминант неотрицательный:
(A-z)²-4B/z>=0
Заметим, что если зафиксировать, например, z=-B, неравенство примет вид
(A+В)²+4>=0 - верно при любых действительных А и В. А значит при таком выборе z для любых допустимых значений А и В найдутся действительные числа x и y, удовлетворяющие исходному условию.
2) В=0 => без ограничения общности, считаем z=0 => условия равносильны уравнению x+y=A. Зафиксировав, например, x=0, получаем y=-A. То есть для любого А найдутся действительные числа x,y,z, удовлетворяющие условию.
Отсюда следует, что ответ на все пункты задачи "Да"