М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
LilianaLiLi1
LilianaLiLi1
07.09.2020 19:48 •  Математика

Сколько решений имеет система уравнений \left \{ {{y = |x+2|} \atop {y = 1/3^{x} }} \right.

👇
Ответ:
aneechkaa000
aneechkaa000
07.09.2020

x\leq -2\Rightarrow |x+2|=-x-2;\;\;\\ -x-2=\dfrac{1}{3^x}\\ f(x)=\dfrac{1}{3^x}+x+2, x\leq -2\\ f'(x)=-\dfrac{ln3}{3^x}+1\leq -\dfrac{ln3}{3^{-2}}+1=1-9ln3

А значит на области задания f(x) монотонно убывает.

f(-2)=9-2+2=90 , а значит равенство 0 не достигается => корней при x\leq -2 исходная система не имеет.

x\geq -2\Rightarrow g(x)=|x+2|=x+2,x\geq -2;s(x)=\dfrac{1}{3^x},x\geq -2\\ g'(x)=10\\ s'(x)=-\dfrac{ln3}{3^x}

А значит на области задания g(x) монотонно возрастает, а s(x) монотонно убывает. А значит при x\geq 2 имеют не более одной точки пересечения.

Т.к. g(-2)=-2+2=01=\dfrac{1}{3^0}=s(0) , то эта точка пересечения существует, причем принадлежит интервалу (-2;0).

А значит исходная система имеет одно решение

4,6(55 оценок)
Ответ:
annaeychinas
annaeychinas
07.09.2020

Данная система эквивалентна уравнению :

3^(-x) =|x+2|

3^(-x) -|x+2| = 0

3^(-x) +-(x+2) = 0   , в зависимости от знака выражения x+2

Найдем производную  f(x) = 3^(-x) +-(x+2)

f'(x) = -3^(-x) *ln(3) +-1

1)  x+2 >=0

f'(x)= -3^(-x) *ln(3) -1 <= 0  - функция монотонно убывает

2)  x+2<0 ;  x<-2

 f'(x) = -3^(-x) *ln(3) +1

 При  x<-2  ;  -x > 2  ⇒ -3^(-x) <- 3^2 = -9

Поскольку :  3>e , то ln(3) >1 ⇒ -3^(-x) *ln(3)  < -9 ⇒ -3^(-x) *ln(3) +1  <- 8 - функция монотонно убывает.

Вывод :  Данная система эквивалентна уравнению :

3^(-x) =|x+2|

3^(-x) -|x+2| = 0

3^(-x) +-(x+2) = 0   , в зависимости от знака выражения x+2

Найдем производную  f(x) = 3^(-x) +-(x+2)

f'(x) = -3^(-x) *ln(3) +-1

1)  x+2 >=0

f'(x)= -3^(-x) *ln(3) -1 <0  - функция монотонно убывает

2)  x+2<0 ;  x<-2

 f'(x) = -3^(-x) *ln(3) +1

 При  x<-2  ;  -x > 2  ⇒ -3^(-x) <- 3^2 = -9

Поскольку :  3>e , то ln(3) >1 ⇒ -3^(-x) *ln(3)  < -9 ⇒ -3^(-x) *ln(3) +1  <- 8 - функция монотонно убывает.

Вывод :  функция монотонно убывает на множестве действительных чисел .

Заметим, что  f(-1) = 3^1 -|1| = 2>0 ;  f(0)= 3^0 -|2| = 1-2 =-1<0

Данная функция может иметь горизонтальные ассимптоты, однако, поскольку функция монотонно убывает на множестве действительных чисел, то может иметь не более одной ассимптоты  при  возрастании  аргумента и не более одной ассимптоты  при убывании аргумента. Таким образом, поскольку f(-1) >0  и f(0) < 0   и функция монотонно убывает на множестве действительных чисел, уравнение

3^(-x) -|x+2| = 0  имеет единственное решение, которое лежит на промежутке x∈(-1;0), как  и представленная система уравнений.

На рисунке 1 показан график функции f(x).

Второй аналитически-графический)

На рисунке 2 показаны графики функций: y= 1/3^x = 3^(-x) и |x+2| в одной системе координат.  В силу геометрических соображений при построении графиков, очевидно, что  правая ветка модуля точно пересекает график степенной функции и ровно в одной точке. Таким образом одно решение уже существует.

Так же , но уже менее очевидно, левая ветка модуля не пересекает степенную функцию. Это  необходимо доказать.

Докажем, что  при любом x<-2 (область определения левой ветки модуля) степенная функция больше чем левая ветка модуля, то есть :

f(x) =3^(-x) - (-x-2) >= 0

Доказать это можно двумя

1) Интуитивно :  

f(-2) =  3^2  -|0| = 9 >0

Из графика видно , что при убывании аргумента  от -2  оба графика возрастают, но при этом степенная функция растет быстрее линейной, то есть f(x) > 9 , то есть левая ветка модуля не пересекает степенную функцию.

Вывод : cистема имеет единственное решение.

2)  Cтрого.

Cкорость роста линейной функции при УБЫВАНИИ аргумента на x<-2 (-x-2) постоянна  и

равна u= -(-x-2)' = 1

А у показательной функции скорость увеличивается  :

v = -(3^(-x) )' = 3^(-x)* ln(3)> 9*ln(3) > u  , при  x<-2.

Тогда, поскольку f(-2)= 9 > 0 , то степенная функция больше линейной при x<-2


Сколько решений имеет система уравнений
Сколько решений имеет система уравнений
4,7(63 оценок)
Открыть все ответы
Ответ:
тобик55555555
тобик55555555
07.09.2020

Пошаговое объяснение:

2х-3у=6, т.к. ни один из коэффициентов при переменных не равен нулю,то графиком будет прямая.Чтобы построить прямую надо знать минимум две точки.Подставим в уравнение Х и получим значение У и наоборот.

ели х=0 подставляем вместо х 0,  

2*0-3у=6

-3у=6

у=6:(-3)

у=-2

теперь у=0 подставляем в уравнение

2х-3*0=6

2х=6

х=6:2

х=3

и так получили две точки графика (0;-2) и (0;3)

Теперь чертим координатную плоскость и отмечаем наши точки,проведём через них прямую это и будет графиком уравнения 2х-3у=6

4,7(23 оценок)
Ответ:
mGgl1
mGgl1
07.09.2020
17,28:(56-X)=36                                                                                                                    (56-x)=17.28 :36                                                                                                                  (56-x)= 0.48                                                                                                                           x=-55.52                                                                                                      
4,6(26 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ