1. Запишите окончание предложения: 1) многочленом называют выражение, которое является ... суммой определенного количества одночленов; 2) многочлен, состоящий из двух членов, называют ...двучленом; 3) многочлен, состоящий из трёх членов, называют ...трехчленом; 4) многочленом стандартного вида называют многочлен, состоящий из ...одночленов, приведенных к стандартному виду; 5) степенью многочлена стандартного вида называют .... наибольшую степень одночлена, входящего в данный многочлен.
Чтобы понимать данные определения надо знать следующее: Одночлен - это алгебраическое выражение, которое состоит из произведения чисел, переменных, каждая из которых может входить в произведение в некоторой степени. Пример: . Есть константа(число) и переменные, содержащие степень. А например одночленом уже не будет. Далее, Одночлен называется представленным в стандартном виде, если он представлен в виде произведения числового множителя на первом месте и степеней различных переменных. т.е. например . Окей, дальше.
2. Какова степень многочлена: Определение степени мы уже знаем, так что легко решим. Очевидно, что тут это Точно также, тут тройка. Тут единица. Тут не очень понял условие, но в любом случае роли это не играет, ответ тут шесть(т.к. x во второй и y в четвертой в сумме дают 6). 3. Запишите многочлен в стандартном виде. 4. Запишите многочлен в стандартном виде. Тут я опять не уверен, что правильно понял степени. Но думаю, если я где-то ошибся, то вы справитесь самостоятельно, тут простые задачи. 5. Запишите выражение в виде: 1) суммы каких-либо двучленов; 2) разности каких-либо двучленов; 3) суммы одночлена и трёхчлена; 4) разности трёхчлена и одночлена. 6. Запишите в стандартном виде сумму многочленов и . 7. Запишите в стандартном виде разность многочленов и . 8. Запишите в стандартном виде разность многочленов и .
Скорость - это производная от перемещения S(t): v(t) = S'(t) = -1/2 * t² + 4*t + 3
Фактически это уравнение параболы, ветви которой направлены вниз. Координату вершины, а значит максимум, можно найти по известной формуле: xв = - b / 2a Считаем: t = -4 / (2*(-1/2)) = 4 Т.е. при t = 4 максимальная скорость v(4) = -1/2 * 4² + 4*4 + 3 = 11
Есть другой исследовать v(t) на максимум. Для чего возьмём производную от v(t) и приравняем её нулю. v'(t) = -t + 4 = 0, откуда t = 4. В этой точке производная меняет знак с плюса на минус, следовательно, это точка максимума.
Итак, максимальная скорость движения этой точки наступит в момент времени, равный 4, и равна 11.
Пошаговое объяснение:
решаем по пятому тригонометрическому тождеству)