1. Будем считать, что выпадение каждой из 6 граней игрального кубика равновероятно. Общее число возможных исходов при двух бросках 36. Перечислим все возможные исходы, при которых выпадет 6 в виде комбинаций двух цифр, первая из которых указывает сколько выпало при первом броске, а вторая - соответственно при втором броске:
1 и 4;
2 и 4;
3 и 4;
4 и 4;
5 и 4;
6 и 4;
5 и 4;
2 и 4;
3 и 4;
4 и 4;
6 и 4.
Всего 11 вариантов, при которых хотя бы один раз выпала 5.
Следовательно, вероятность выпадения 5 хотя бы при одном броске 11/36.
ответ: 11/36 или ≈ 0,30 (30%)
2.Всего возможных исходов - 70.
Благоприятных исходов: 70-7-5=58
Вероятность - количество благоприятных исходов разделить на общее количество.
То есть, вероятность равна 58/70.
ответ: 58/70 или ≈ 0,83 (83%)
1. Будем считать, что выпадение каждой из 6 граней игрального кубика равновероятно. Общее число возможных исходов при двух бросках 36. Перечислим все возможные исходы, при которых выпадет 6 в виде комбинаций двух цифр, первая из которых указывает сколько выпало при первом броске, а вторая - соответственно при втором броске:
1 и 4;
2 и 4;
3 и 4;
4 и 4;
5 и 4;
6 и 4;
5 и 4;
2 и 4;
3 и 4;
4 и 4;
6 и 4.
Всего 11 вариантов, при которых хотя бы один раз выпала 5.
Следовательно, вероятность выпадения 5 хотя бы при одном броске 11/36.
ответ: 11/36 или ≈ 0,30 (30%)
2.Всего возможных исходов - 70.
Благоприятных исходов: 70-7-5=58
Вероятность - количество благоприятных исходов разделить на общее количество.
То есть, вероятность равна 58/70.
ответ: 58/70 или ≈ 0,83 (83%)
Нет
Пошаговое объяснение:
Если двигаться по кругу, то будет 19 переходов, на каждом из которых кол-во яблок увеличивается на +1 или -1. Так как пройдя полный круг, мы вернемся к начальной яблоне, то общая сумма должна равняться 0. То есть количество +1 и -1 равно. А это возможно только, когда число переходов четно. 19 - нечетное число, значит условия задачи не будут соблюдены.