Как известно, аликвотными (единичными) дробями в математике принято называть дроби вида 1/x, т.е. такие дроби, в которых числитель равен единице, а знаменатель - любое натуральное число. Сталкиваясь с задачей разложения аликвотных дробей в виде суммы меньших аликвотных дробей была выведена закономерность, которую можно представить в виде формулы 1/x = 1/(x+1) + 1/x(x+1), с которой поставленная задача решается так: 1/2 = 1/(2+1) + 1/2(2+1) = 1/3+1/6; 1/4 = 1/(4+1) + 1/4(4+1) = 1/5+1/20; 1/6 = 1/(6+1) + 1/6(6+1) = 1/7+1/42; 1/8 = 1/(8+1) + 1/8(8+1) = 1/9+1/72; 1/10 = 1/(10+1) + 1/10(10+1) = 1/11+1/110.
x^2-x-42=0
а=1 |Д=b^2-4ac
d=-1 |D=(-1)^2-4*1*(-42)=1+168=169
с=-42 |
-b +(корень) D 1+(корень)169 1+13
x1= = = = 7
2а 2 2
-b - (корень) D 1-(корень)169 1-13
x2= === -6
2а 2 2
ответ: -6;7