Функция f(x) = 2x³ - 9x² - 60x + 127
Производная f'(x) = 6x² - 18x - 60
Находим точки экстремума 6x² - 18x - 60 = 0
х² - 3х - 10 = 0
D = 9 + 40 = 49
х1 = 0,5(3 - 7) = -2;
х2 = 0,5(3 + 7) = 5
f'(x) > 0 при x∈ (-∞; -2)U(5; +∞) - в этих интервалах функция возрастает
f'(x) < 0 при х∈(-2; 5) - в этом интервале функция убывает
В точке х = -2 производная меняет знак с + на -, поэтому х = -2 - точка максимума.
В точке х = 5 производная меняет знак с - на +, поэтому х = 5 - точка минимума
ответ: Точки экстремума: х = -2 -точка максимума; х = 5 - точка минимума.
Интервалы монотонности: f(x)↑ при х∈ (-∞; -2)U(5; +∞);
f(x)↓ при х∈(-2; 5)
Відповідь: 38 мiшкiв.
Покрокове пояснення:
1) 1680+1520=3200(кг) цукру перевезла вантажiвка за два рейси;
2) 3200:80=40(кг) важить один мiшок з цукром;
3) 1520:40=38(м.)
Вiдповiдь: 38 мiшкiв з цукром перевела вантажiвка за другий рейс.