М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
dmitryveris
dmitryveris
07.03.2020 10:28 •  Математика

Найдите длину пути,которого 75 % равно всего 30 км​

👇
Ответ:
alexanrrr
alexanrrr
07.03.2020

У тебя есть 75% и это 30

Тогда остальные 25% это 30*0.25=10км

А общее 30+10=40

4,7(25 оценок)
Ответ:
BovolskajLesj
BovolskajLesj
07.03.2020

x - весть путь

x км - 100%

30км - 75%

Пропорция:

x = 100*30/75

x = 3000/75

x = 40

4,8(95 оценок)
Открыть все ответы
Ответ:
Nail20041
Nail20041
07.03.2020

Заметим, что максимально может быть 7 сороконожек(потому что 8*40=320, а у "нас" всего 298 ног).

Сороконожки 1-головые, поэтому если их 7, то остается 26-7=19 голов. Которые приходятся на 3-головых драконов. Но 19 на 3 не делится.

Поэтому 40 ножек может быть либо 5, либо 2

При 5 драконам "остается" 21 голова, т.е их 7. В этом случае у дракона ног: (298-5*40)/7=98/7=14;

При 2-х, драконам "остается" 24, т.е их 8. В этом случае у дракона ног: (298-2*40)/8=218/8=27,25;

Правильный ответ -5 40-ножек, 7 драконов, имеющих по 14 ног каждый.

4,5(32 оценок)
Ответ:
Dispensable
Dispensable
07.03.2020

Пошаговое объяснение:

Пример 1. Произвели 7 выстрелов. Вероятность попадания при одном выстреле равна 0,705. Найти вероятность того, что при этом будет ровно 5 попаданий.

Получаем, что в задаче идет речь о повторных независимых испытаниях (выстрелах по мишени), всего производится n=7 выстрелов, вероятность попадания при каждом p=0,705, вероятность промаха q=1−p=1−0,705=0,295. Нужно найти, что будет ровно k=5 попаданий. Подставляем все в формулу (1) и получаем:

P7(5)=C57⋅0,7055⋅0,2952=21⋅0,7055⋅0,2952=0,318.

Пример 2. Вероятность попадания в мишень при одном выстреле равна 0,4. По мишени производится четыре независимых выстрела. Найти вероятность того, что будет хотя бы одно попадание в мишень.

Изучаем задачу и выписываем параметры: n=4 (выстрела), p=0,4 (вероятность попадания), k≥1 (будет хотя бы одно попадание). Используем формулу для вероятности противоположного события (нет ни одного попадания):

P4(k≥1)=1−P4(k<1)=1−P4(0)=

=1−C04⋅0,40⋅0,64=1−0,64=1−0,13=0,87.

Вероятность попасть хотя бы один раз из четырех равна 0,87 или 87%.

Пример 3. Вероятность поражения мишени стрелком равна 0,3. Найти вероятность того, что при 6 выстрелах мишень будет поражена от трех до шести раз.

В отличие от предыдущих задач, здесь нужно найти вероятность того, что число попаданий будет находится в некотором интервале (а не равно в точности какому-то числу). Но формула используется прежняя.

Найдем вероятность того, что мишень будет поражена от трех до шести раз, то есть будет или 3, или 4, или 5, или 6 попаданий. Данные вероятности вычислим по формуле (1):

P6(3)=C36⋅0,33⋅0,73=0,185.

P6(4)=C46⋅0,34⋅0,72=0,06.

P6(5)=C56⋅0,35⋅0,71=0,01.

P6(6)=C66⋅0,36⋅0,70=0,001.

Так как события несовместные, искомая вероятность может быть найдена по формуле сложения вероятностей:

P6(3≤k≤6)=P6(3)+P6(4)+P6(5)+P6(6)=

=0,185+0,06+0,01+0,001=0,256.

Пример 4. Вероятность хотя бы одного попадания в цель при четырех выстрелах равна 0,9984. Найти вероятность попадания в цель при одном выстреле.

Обозначим вероятность попадания в цель при одном выстреле. Введем событие:

A= (Из четырех выстрелов хотя бы один попадет в цель),

а также противоположное ему событие, которое можно записать как:

A¯¯¯¯= (Все 4 выстрела будут мимо цели, ни одного попадания).

Запишем формулу для вероятности события A. Выпишем известные значения: n=4, P(A)=0,9984. Подставляем в формулу (1) и получаем:

P(A)=1−P(A¯¯¯¯)=1−P4(0)=1−C04⋅p0⋅(1−p)4=1−(1−p)4=0,9984.

Решаем получившееся уравнение:

1−(1−p)4=0,9984,(1−p)4=0,0016,1−p=0,2,p=0,8.

Итак, вероятность попадания в цель при одном выстреле равна 0,8.

автор: vladislav.kuzukin √

4,8(12 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ