На доске написаны числа от 1 до 100. За один ход стираются 2 числа, а на доску записывается либо модуль их разности, либо их сумма. В конце на доске осталось одно число. Какому из перечисленных чисел оно может быть равно с решением!
Заметим, что из двух четных чисел, появляется четное; из двух нечетных - четное, а из нечетного и четного - нечетное, таким образом после ход кол-во нечетных может уменьшиться на 2, а может не измениться, то есть четность количества нечетных чисел не меняется, так как вначале было 50 нечетных чисел, то в конце останется четное число нечетных чисел, а так как останется в конце только 1 число, то нечетных чисел в конце не будет, то есть ответы 1,9 не подходят. Докажем, что оно может быть равно как 0, так и 4
Первым делом разобьем числа на пары (1,2), (3,4), ... (99,100) выпишем в них модули разности, и у нас останется 50 единиц, тогда разобьем на 25 пар из двух единиц. Теперь в 23 парах запишем модуль разности, то есть 0, а в двух оставшихся сумму, то есть 2. Таким образом у нас остались 2 двойки и куча нулей. Теперь каждый из наших 0 будем складывать с двойкой, чтобы у нас исчезли все 0 и осталось только две двойки. Теперь, когда осталось ровно две двойки, мы можем их сложить, тогда единственным числом будет 4, а можем взять модуль разности, и у нас будет 0. Таким образом, в конце может остаться как 0, так и 4, а 1 и 9 не могут
Исходя из условий задачи можно утверждать точно, что: Условие 1. Все 5 внуков получили пирожки; Условие 2: Каждый внук получил не меньше 1 пирожка.
Что может быть верно? А) кто-то то получил 6 пирожков , а кто-то то - 2. 10 ( пирожков всего) - 6 (получил кто-то из 5 внуков)=4 (пирожка осталось). Значит остальные 4 внука должны получить как минимум по 1 пирожку (4*1=4). Значит 2 пирожка не смог бы получить никто. ОТВЕТ: НЕВЕРНО
Б) Четыре внука получили по 1 пирожку 4 (внука)*1 (по одному пирожку)=4 (пирожка), а пятый внук мог получить от одного до шести пирожков (по желанию). ответ: ВЕРНО.
В) Два внука получили по 4 пирожка. 2 *4 = 8 пирожков получили два внука. Значит, 10-8=2 пирожка нужно разделить на трех внуков (2:3<1). Не соответствует условию 2, ведь каждый внук получил как минимум по 1 пирожку. ответ: НЕВЕРНО.
Г) Три внука получили по 3 пирожка. 3*3=9 пирожков. Остальные два внука (5-3=2) получили 1 пирожок на двоих. Не соответствует второму условию. ответ: НЕВЕРНО.
Д) Ровно четыре внука получили по 2 пирожка. Не соответствует первому условию, все 5 внуков получили пирожки, а не только (ровно) 4 внука. ответ: НЕВЕРНО.
Единственный верный вариант: Б) Четыре внука получили по 1 пирожку
Пусть первая цифра а, третья с. Тогда вторая (а + с) / 2. Само число 100а + (а + с) / 2 * 10 + с = 105а + 6с. 102а + 6с делится на 6, поэтому вычтем это. Остается 3а. Так как остаток не нулевой, а - нечетно, и остаток 3а равен 3. Теперь из числа вычтем 99а, так как это делится на 11. Получим 6а + 6с = 6(а + с) = 12 (а + с) / 2. Так как (а + с) / 2 целое число, вычтем 11 (а + с) / 2. Получаем (а + с) / 2 - 3 делится на 11. Но (а + с) / 2 меньше 10, поэтому принимает единственное подходящее значение 6 ((а + с) / 2 - 3 = 0). Тогда получаем три случая: а = 1, с = 5, число 135 а = 3, с = 3, число 333 а = 5, с = 1, число 531 Это все числа, удовлетворяющие условиям
0 или 4
Пошаговое объяснение:
Заметим, что из двух четных чисел, появляется четное; из двух нечетных - четное, а из нечетного и четного - нечетное, таким образом после ход кол-во нечетных может уменьшиться на 2, а может не измениться, то есть четность количества нечетных чисел не меняется, так как вначале было 50 нечетных чисел, то в конце останется четное число нечетных чисел, а так как останется в конце только 1 число, то нечетных чисел в конце не будет, то есть ответы 1,9 не подходят. Докажем, что оно может быть равно как 0, так и 4
Первым делом разобьем числа на пары (1,2), (3,4), ... (99,100) выпишем в них модули разности, и у нас останется 50 единиц, тогда разобьем на 25 пар из двух единиц. Теперь в 23 парах запишем модуль разности, то есть 0, а в двух оставшихся сумму, то есть 2. Таким образом у нас остались 2 двойки и куча нулей. Теперь каждый из наших 0 будем складывать с двойкой, чтобы у нас исчезли все 0 и осталось только две двойки. Теперь, когда осталось ровно две двойки, мы можем их сложить, тогда единственным числом будет 4, а можем взять модуль разности, и у нас будет 0. Таким образом, в конце может остаться как 0, так и 4, а 1 и 9 не могут