ответ:
отложим одну монету, а на каждую чашу весов положим по две монеты. возможны два случая.
1) весы в равновесии. так как четырёх настоящих монет нет, то на одной чаше лежат обе фальшивые монеты. следующим взвешиванием достаточно сравнить веса монет с одной чаши: если весы в равновесии, то эти монеты настоящие, и фальшивые монеты в другой чаше; если весы не в равновесии, то фальшивые монеты – на весах.
2) одна из чаш перевесила. тогда на весах находится или только лёгкая фальшивая монета в более лёгкой чаше или только тяжёлая фальшивая монета в более тяжёлой чаше, или обе монеты находятся в разных чашах. вторым взвешиванием сравним веса монет в лёгкой чаше: если весы не в равновесии, то более лёгкая монета – фальшивая. если весы в равновесии, то отложенная монета – фальшивая (и она лёгкая). аналогично, третьим взвешиванием сравним веса монет из тяжёлой чаши: тогда, либо более тяжёлая монета – фальшивая, либо, если весы в равновесии, отложенная монета фальшивая (и она тяжёлая).
решение 2
первый раз положим на чаши весов первую и вторую монеты, а второй раз – третью и четвёртую. возможны только два случая.
1) один раз весы были в равновесии (пусть при первом взвешивании; при этом на чашах настоящие монеты), а другой раз – нет.
возьмем настоящую монету из первого взвешивания и сравним её с той, что оставалась на столе. если их веса равны, то последняя монета настоящая, а фальшивые – те, что участвовали во втором взвешивании. иначе, монета со стола – фальшивая, и мы знаем, легче она настоящей или тяжелее, а потому знаем, лёгкая или тяжёлая фальшивая монета участвовала во втором взвешивании.
2) оба раза весы были не в равновесии. тогда на весах каждый раз была одна фальшивая монета, а на столе осталась настоящая. взвесим её с лёгкой монетой из первого взвешивания. если веса равны, то в первом взвешивании фальшивой была более тяжёлая, а во втором – более лёгкая. если же более лёгкая монета из первого взвешивания оказалась легче, то она фальшивая, а из второго взвешивания фальшивая – более тяжёлая.
замечания
отметим, что решение 2 не использует то, что обе фальшивых монеты весят столько же, сколько две настоящих.
Задача
У трех девочек - Лизы, Маши, и Вики - шапочки разного цвета: красного, белого и синего. У кого какого цвета шапочка, если все записи неверные?
Запись:
У Лизы белая шапочка. У Маши белая или синяя шапочка. У Вики красная шапочка.
Всего шапок три цвета: красная, белая, синяя. В условии говорится, что все утверждения неверны, а это значит, что все написанное в тексте противоположно сказанному. Следовательно, если у Лизы НЕ БЕЛАЯ шапка, значит либо КРАСНАЯ либо СИНЯЯ. У Маши НЕ БЕЛАЯ и НЕ СИНЯЯ шапка, а значит КРАСНАЯ. У Вики шапка НЕ КРАСНОГО цвета, а это значит либо СИНЯЯ либо БЕЛАЯ. Если у Лизы не может быть БЕЛОЙ шапки, а КРАСНАЯ на Маше, значит у Лизы шапка СИНЕГО цвета. Поскольку КРАСНАЯ шапка на Маше, а СИНЯЯ на Лизе, значит на Вике шапка БЕЛОГО цвета.
ответ: На Маше шапка красного цвета, на на Лизе синего, на Вике белого.
Рассуждение как просят в условии:
Начни рассуждать так; "Запись у Маши белая и синяя шапочка" неверна. Значит у Маши шапка КРАСНОГО цвета. Если запись"У Лизы белая шапочка" неверна, а шапка красного цвета на Маше, значит у Лизы шапка СИНЕГО цвета. Если шапка красного цвета на Маше, а синего на Лизе, значит на Вике шапка БЕЛОГО цвета.
ответ: На Маше шапка красного цвета, на на Лизе синего, на Вике белого.
Пошаговое объяснение:
Нужно умножить площадь основания на высоту