Пусть х км/ч - скорость на обратном пути, тогда (х + 3) км/ч - от дома до станции; 30 мин = 0,5 ч. Уравнение:
30/х - 30/(х+3) = 0,5
30 · (х + 3) - 30х = 0,5 · х · (х + 3)
30х + 90 - 30х = 0,5х² + 1,5х
90 = 0,5х² + 1,5х
0,5х² + 1,5х - 90 = 0
Разделим обе части уравнения на 0,5
х² + 3х - 180 = 0
D = b² - 4ac = 3² - 4 · 1 · (-180) = 9 + 720 = 729
√D = √ 729 = 27
х₁ = (-3-27)/(2·1) = (-30)/2 = -15 (не подходит, т.к. < 0)
х₂ = (-3+27)/(2·1) = 24/2 = 12 (км/ч) - скорость на обратном пути
(х + 3) = 12 + 3 = 15 (км/ч) - скорость от дома до станции.
ответ: 15 км/ч.
ответ: 4√7 см
Пошаговое объяснение: Расстояние между точкой и прямой равно длине отрезка, проведенного перпендикулярно между ними.
Отрезок РА перпендикулярен плоскости АВС, ⇒ РА⊥любой прямой, лежащей в той же плоскости. ⇒
∆ АВР - прямоугольный. Угол АВР= 30° (дано) => АВ=РА•ctg30°=8√3.
По условию ∆ АВС - равнобедренный. Тупой угол в треугольнике только один, поэтому ∠В=∠С=(180°-120*):2=30°
Проведем АН⊥ВС. В треугольнике АВС отрезок АН – высота, биссектриса и медиана.
В ∆ АВН катет АН противолежит углу 30° и равен половине гипотенузы АВ (свойство). ⇒ АН=8√3:2=4√3
Наклонная РН- искомое расстояние ( по т. о 3-х перпендикулярах РН⊥ВС)
Из ∆ АРН по т.Пифагора РН=√(AP²+AH*)=√(64+48)=4√7 см
965
Пошаговое объяснение:
9*100=900
6*10=60