М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Мари7890
Мари7890
12.01.2021 03:07 •  Математика

Как решить пример |-8⅓|:|⅝|

👇
Ответ:

Пошаговое объяснение:

для наиболее легкого решения переведем в неправильную дробь, т.е (-25/3) : (5/8)

при делении мы переворачиваем дробь, а знак деления заменяем умножением, т.е (-25/3)*(8/5) записываем все под одну черту и решаем, -25/3*5/8= -125/24

после выделим целую часть и - 5целых5/24

4,6(60 оценок)
Открыть все ответы
Ответ:
НАСТЯ7539
НАСТЯ7539
12.01.2021

Верно

Пошаговое объяснение:

Простое число — натуральное (целое положительное) число, имеющее ровно два различных натуральных делителя — единицу и самого себя. ⇒ простое число не может быть четным (тогда бы оно делось на 2).

В математике есть такое правило: Произведение может быть нечетным, если все сомножители нечетны. ⇒ произведение 2=х простых чисел всегда нечетное число.

Доказательство этого правила (если нужно):

Пусть числа а и b являются нечетными. Докажем, что число n = а • b также нечетно.

a = 2k + 1, b= 2p + 1, где k и p - целые числа.

Тогда n= a • b = (2k+1) • (2p+1) = 4kp + 2k + 2p + 1 = 2(2kp + k + p) + 1 = 2s +1 (число нечетное). Если числа k и p являются целыми, то число s = 2kp + k + p - тоже целое число.

Мы доказали, что число n может быть представлено в виде n= 2s + 1, следовательно, является нечетным. Ч. т. д.

4,7(54 оценок)
Ответ:

Верно

Пошаговое объяснение:

Простое число — натуральное (целое положительное) число, имеющее ровно два различных натуральных делителя — единицу и самого себя. ⇒ простое число не может быть четным (тогда бы оно делось на 2).

В математике есть такое правило: Произведение может быть нечетным, если все сомножители нечетны. ⇒ произведение 2=х простых чисел всегда нечетное число.

Доказательство этого правила (если нужно):

Пусть числа а и b являются нечетными. Докажем, что число n = а • b также нечетно.

a = 2k + 1, b= 2p + 1, где k и p - целые числа.

Тогда n= a • b = (2k+1) • (2p+1) = 4kp + 2k + 2p + 1 = 2(2kp + k + p) + 1 = 2s +1 (число нечетное). Если числа k и p являются целыми, то число s = 2kp + k + p - тоже целое число.

Мы доказали, что число n может быть представлено в виде n= 2s + 1, следовательно, является нечетным. Ч. т. д.

4,6(96 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ