Объём призмы равен произведению ее высоты на площадь основания.
Т.к. призма прямая, ее ребра перпендикулярны основанию и высота призмы равна длине бокового ребра.
В основании квадрат большей стороны треугольника больше суммы квадратов двух других сторон, следовательно, ∆ АВС - тупоугольный, и высота ВН, проведенная к меньшей стороне, - вне треугольника.
Сделаем рисунок. Проведем высоту основания к меньшей стороне, выразим ее квадрат из прямоугольных треугольников СВН и АВН и приравняем выражения.
ВН²=ВС²-НС²
ВН²=ВА²-АН²
ВС²-НС²=ВА²-АН²
Примем СН=х, тогда АН=3+х
25-х²=49-9-6х-х² ⇒ 6х= 15, и х=2,5
S∆ АВС=AC•BH:2=3,75 см²
V=S•h
h=BH=2,5
V=3,75•2,5=9,375 см³
Пошаговое объяснение:
log3(x*(x+3))= log3(x+24)
x*(x+3)=x+24
x^2 +3x=x+24
x^2+2x-24=0
D=2^2 - 4*1*(-24)=100
x1 = (-2-10)/2 = -6
x2 = (-2+10)/2 = 4