Построить график функции без небольшого анализа самой функции практически невозможно. Это необходимо как минимум для того, чтобы проконтролировать правильность построения. Поэтому с небольшого анализа и начнем.
Первое, на что необходимо обратить внимание — это разновидность заданной функции. От этой разновидности будет зависеть и кривая графика.
В нашем случае заданная функция — линейная, поэтому ее графиком будет прямая линия. Такой короткий анализ уже намного упрощает задание.
О прямой линии известно, что ее можно построить с двух точек. Поэтому достаточно найти две точки графика и провести через них прямую.
Точка принадлежит графику, если выполняется условие, что:
\[y\ =\ 2x\ -\ 4\]
Найдем такие 2 точки, выбрав произвольные значения аргумента х. Например, возьмем 0 и 5.
При х = 0 значение функции будет:
\[y\left(0\right)\ =\ 2\cdot 0\ -4=-4\]
\[y\left(5\right)\ =\ 2\cdot 5\ -4=6\]
Есть две точки (0; -4) и (5; 6). Проведем через них прямую, которая будет графиком заданной в условии функции.
Можно было подставлять не произвольные значения переменной х, а найти точки пересечения функции с координатными осями. Оба варианта приведут к одному и тому же результату и являются равными по сложности расчетов.
1способ 100% весь периметр прямоугольника, то есть сколько-то % ширина прямоугольника + сколько-то % длина прямоугольника= 100% периметр прямоугольника. от 100% +10% -20% = 90% теперь периметр прямоугольника. 100% - 90% = 10%, значит на 10% уменьшился периметр прямоугольника. 2 способ х - ширина прямоугольника 4х - длина прямоугольника х + 4х= периметр прямоугольника, он 100% 5х=100% х=100/5 x=20% - это ширина прямоугольника в % 4х =4* 20%=80% - это длина прямоугольника в % так как ширину увеличили на 10% , то 20 % + 10%= 30% новая ширина прямоугольника в %.а так как длину уменьшили на 20% , то 80%- 20% = 60% новая длина прямоугольника в %.значит новый периметр прямоугольника в % будет таким: 60% + 30%= 90% теперь определим на сколько % изменился периметр прямоугольника: 100% - 90% = 10%, т.е. периметр прямоугольника изменился на 10%.
Пошаговое объяснение:
Построить график функции без небольшого анализа самой функции практически невозможно. Это необходимо как минимум для того, чтобы проконтролировать правильность построения. Поэтому с небольшого анализа и начнем.
Первое, на что необходимо обратить внимание — это разновидность заданной функции. От этой разновидности будет зависеть и кривая графика.
В нашем случае заданная функция — линейная, поэтому ее графиком будет прямая линия. Такой короткий анализ уже намного упрощает задание.
О прямой линии известно, что ее можно построить с двух точек. Поэтому достаточно найти две точки графика и провести через них прямую.
Точка принадлежит графику, если выполняется условие, что:
\[y\ =\ 2x\ -\ 4\]
Найдем такие 2 точки, выбрав произвольные значения аргумента х. Например, возьмем 0 и 5.
При х = 0 значение функции будет:
\[y\left(0\right)\ =\ 2\cdot 0\ -4=-4\]
\[y\left(5\right)\ =\ 2\cdot 5\ -4=6\]
Есть две точки (0; -4) и (5; 6). Проведем через них прямую, которая будет графиком заданной в условии функции.
Можно было подставлять не произвольные значения переменной х, а найти точки пересечения функции с координатными осями. Оба варианта приведут к одному и тому же результату и являются равными по сложности расчетов.