За этими определениями следуют пять постулатов: «Допустим:
1) что от всякой точки до всякой точки можно провести прямую линию;
2) и что ограниченную прямую можно непрерывно продолжить по прямой;
3) и что из всякого центра и всяким раствором может быть описан круг;
4) и что все прямые углы равны между собой;
5) и если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньше двух прямых, то продолженные неограниченно эти две прямые встретятся с той стороны, где углы меньше двух прямых».
Так как периметр равен 24 см, то полупериметр (сумма длин двух смежных сторон) равен 24 : 2=12 см. Пусть одна сторона х см, тогда другая сторона (12-х) см. Проверим площадь: х(12-х)=35 х(12-х)=28 12х-х²-35=0 12х-х²-28=0 х²-12х+35=0 х²-12х+28=0 Д=144-140=4 Д=144-112=32 х(1)=(12-2)/2=5 х(1)=(12+4√2) / 2 = 6+2√2 х(2)=(12+2)/2=7 х(2)=(12-4√2)/2 = 6-2√2
12-5=7 (см) вторая сторона 12-7=5 (см) вторая сторона ответ: Площадь данного прямоугольника может быть только 35 см²
За этими определениями следуют пять постулатов: «Допустим:
1) что от всякой точки до всякой точки можно провести прямую линию;
2) и что ограниченную прямую можно непрерывно продолжить по прямой;
3) и что из всякого центра и всяким раствором может быть описан круг;
4) и что все прямые углы равны между собой;
5) и если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньше двух прямых, то продолженные неограниченно эти две прямые встретятся с той стороны, где углы меньше двух прямых».