Если мы умножим делитель на 9, то соответственно и частное увеличится в 9 раз. А нам нужно, чтобы оно увеличилось всего лишь в 2,5 раз. Значит, нужно его уменьшать. Чтобы уменьшить частное, нужно увеличить делитель. 9:2,5=3,6. Пропорционально, если мы умножим делитель на 3,6 то частное увеличится относительно первоначального в 2,5 раза. Для проверки подставляем любые числа, например: 20:2=10. Увеличиваем делимое в 9раз: 180:2=90(частное тоже увеличилось в 9 раз). Теперь увеличиваем делимое в 3,6 (2x3,6=7,2) Получаем:180:7,2=25 (25 в 2,5 раза больше 10). Такая закономерность сохраняется для любых чисел
Треугольники DBE и ABC подобны с коэффициентом подобия 1/2. То есть S_DBE / S_ABC = (1/2)^2=1/4.
S_ABC=4*S_DBE,
S_ADEC = S_ABC - S_DBE = 3*S_DBE,
Отсюда S_ABC = 4/3 * S_ADEC.
Рассмотрим четырехугольник ADEC. Это равнобокая трапеция, у которой диагонали равна d=6, а синус угла между диагоналями равен sinα=1/3. Площадь его равна S_ADEC=1/2*d^2*sinα=1/2*6^2*1/3=6.
S_ABC=4/3*6=8.
ответ: 2)8.