Предположим, что . Тогда и
. Проверим последнее утверждение.
Данное произведение — это произведение трёх последовательных чисел, значит, один из множителей обязательно делится на 3. Так как p простое и больше 3, p-1 и p+1 чётны. Докажем, что произведение p-1 = 2k и p+1 = 2k+2 (k ∈ N) делится на 8:
. Оно, очевидно, делится на 4. Также оно делится ещё на 2, так как одно из чисел k и k+1 обязательно чётное.
.
Однако из этого не обязательно следует, что и . Но p > 3 и p — простое, значит, p не содержит множителей числа 24, то есть на 24 может делиться только
, что и требовалось доказать.
1) 973098, 909008, 901128, 770000, 400007, 310010, 199009, 65200, 51123, 29100, 4829, 545.
2) 98, 428, 450, 6001, 35100, 70060, 88987, 99897, 100900, 229000, 230200, 703010.