Найдем сначала общее решение соответствующего однородного дифференциального уравнения
Пусть , мы получим характеристическое уравнение
— общее решение однородного диф. ур.
Найдём теперь частное решение. Рассмотрим функцию
отсюда
;
. Сравнивая
с корнями характеристического уравнения и, принимая во внимая, что
, частное решение будем искать в виде:
Подставляем в исходное дифференциальное уравнение
Приравниваем коэффициенты при степени x
откуда
откуда
откуда
Частное решение:
Общее решение линейного неоднородного дифференциального уравнения:
Найдем сначала общее решение соответствующего однородного дифференциального уравнения
Пусть , мы получим характеристическое уравнение
— общее решение однородного диф. ур.
Найдём теперь частное решение. Рассмотрим функцию
отсюда
;
. Сравнивая
с корнями характеристического уравнения и, принимая во внимая, что
, частное решение будем искать в виде:
Подставляем в исходное дифференциальное уравнение
Приравниваем коэффициенты при степени x
откуда
откуда
откуда
Частное решение:
Общее решение линейного неоднородного дифференциального уравнения:
12,5
Пошаговое объяснение:
Там по течению 15 км а течение 2,5км мы делим 15 км минус 2,5 будет 12,5