Для левой части ур-ия применим формулу суммы синусов: Sin x + Sin y = 2Sin ((x + y)/2) · Cos ((x - y)/2) А для правой части формулы понижения степени: Cos² x = (1 + Cos 2x) / 2 Sin² x = (1 - Cos 2x) / 2
То есть: 2Sin 4x · Cos x = 2 · ((1 + Cos 4x)/2 - (1 - Cos 6x)/2))
2Sin 4x · Cos x = 1 + Cos 4x - 1 + Cos 6x
2Sin 4x · Cos x = Cos 4x + Cos 6x
Для правой части ур-ия применим формулу суммы косинусов: Cos x + Cos y = 2Cos ((x + y)/2) · Cos ((x - y)/2)
2Sin 4x · Cos x = 2Cos 5x * Cos x
2Sin 4x · Cos x - 2Cos 5x * Cos x = 0
Выносим общий множитель 2Cos x: 2Cos x · (Sin 4x - Cos 5x) = 0
Отсюда: Cos x = 0 ⇒ x = ±π/2 + 2πk, k — целое
Sin 4x - Cos 5x = 0
Cos (π/2 - 4x) - Cos (5x) = 0
Применяем формулу разности косинусов: Cos x - Cos y = -2Sin ((x + y)/2) · Sin ((x - y)/2)
То есть: -2Sin ((π/2 + x)/2) · Sin ((π/2 - 9x)/2) = 0
1) Sin ((π/2 + x)/2) = 0 (π/2 + x)/2 = πk π/2 + x = 2πk x = -π/2 + 2πk
При разрезании верёвочки длины 1 на равных частей у кваждой будет длина
Для того, чтобы кусочки верёвочки длины 2 после разрезания были бы такой же длины, т.е. нужно разрезать верёвочку длины 2 на частей.
Значит всего будет частей.
Проще говоря, на сколько бы частей не разрезали эти верёвочки, общее число всех кусочков непременно окажется кратным трём, т.е. должно делиться на три. По признаку делимости на три, и сумма цифр такого числа обязательно должна делиться на три.
Если предлагаются варианты ответов: 2014, 2015, 2016, 2017 или 2018, то единственным подходящим вариантом будет 2016, поскольку:
Для левой части ур-ия применим формулу суммы синусов:
Sin x + Sin y = 2Sin ((x + y)/2) · Cos ((x - y)/2)
А для правой части формулы понижения степени:
Cos² x = (1 + Cos 2x) / 2
Sin² x = (1 - Cos 2x) / 2
То есть:
2Sin 4x · Cos x = 2 · ((1 + Cos 4x)/2 - (1 - Cos 6x)/2))
2Sin 4x · Cos x = 1 + Cos 4x - 1 + Cos 6x
2Sin 4x · Cos x = Cos 4x + Cos 6x
Для правой части ур-ия применим формулу суммы косинусов:
Cos x + Cos y = 2Cos ((x + y)/2) · Cos ((x - y)/2)
2Sin 4x · Cos x = 2Cos 5x * Cos x
2Sin 4x · Cos x - 2Cos 5x * Cos x = 0
Выносим общий множитель 2Cos x:
2Cos x · (Sin 4x - Cos 5x) = 0
Отсюда:
Cos x = 0 ⇒ x = ±π/2 + 2πk, k — целое
Sin 4x - Cos 5x = 0
Cos (π/2 - 4x) - Cos (5x) = 0
Применяем формулу разности косинусов:
Cos x - Cos y = -2Sin ((x + y)/2) · Sin ((x - y)/2)
То есть:
-2Sin ((π/2 + x)/2) · Sin ((π/2 - 9x)/2) = 0
1) Sin ((π/2 + x)/2) = 0
(π/2 + x)/2 = πk
π/2 + x = 2πk
x = -π/2 + 2πk
2) Sin ((π/2 - 9x)/2) = 0
(π/2 - 9x)/2 = πk
π/2 - 9x = 2πk
9x = π/2 - 2πk
x = π/18 - 2π/(9k)
ответ:
x = ±π/2 + 2πk, k — целое
x = π/18 - 2π/(9k)