Нужно найти такие два натуральных (целых) числа, отношение которых равно отношению двух дробных чисел в задании.
Первый решения: Отношение- это по сути деление одного числа на другое. Выполним это деление, сократив получившуюся дробь:
Конечно, можно подобрать сколько угодно много пар целых чисел, имеющих то же отношение, что и исходные дроби. Но, существует только одна минимальная пара таких чисел, и мы её получили сокращая дробь (теперь в числителе и знаменателе- взаимно простые числа).
Второй решения (для тех, кто любит повозиться): Умножим обе дроби на наименьшее общее кратное (НОК) их знаменателей. При этом отношение не изменится, зато вместо дробей мы получим целые числа.
Разложим на простые множители оба знаменателя: 18 = 2 * 9 = 2 * 3 * 3 12 = 2 * 6 = 2 * 2 * 3 Берём каждый простой множитель в максимальном количестве, которое встретилось в разложении одного из знаменателей. НОК (18,12) = 2 * 2 * 3 * 3 = 36 Теперь умножаем на 36 обе дроби в отношении, сокращаем дроби, и получаем отношение целых чисел:
Пошаговое объяснение:
По условию известно, что для пошива штор было приобретено 3 куска ткани различной длины.
В первом из которых было 58,75 метров ткани.
Вычислим длину второго куска если известно, что он на 21,205 метра длиннее чем первый.
58,75 + 21,205 = 79,955 м.
Общая длина первых двух кусков составляет длину третьего, вычислим её:
58,75 + 79,955 = 138,705 м.
Рассчитаем какова длина всех трёх кусков купленной ткани:
58,75 + 79,955 + 138,705 = 277,41 м.
ответ: общая длина купленной ткани составляет 277,41 м.