Десятичные дроби впервые были употреблены замечательным узбекским ученым ал-Каши. В начале ХV в. в Средней Азии вблизи города Самарканд была создана большая обсерватория. В ней производились наблюдения за движением звезд, планет и Солнца, вычислялись дни праздников и т. д. В обсерватории работали лучшие ученые того времени. Руководил обсерваторией ученый Джемшид ибн-Масуд ал-Каши, иногда называемый Гиясседдином ал-Каши, который был высокообразованным математиком и астрономом. Он оставил после себя много замечательных математических открытий. В 1427 г. ал-Каши закончил книгу “Ключ к арифметике” . В этой книге он впервые в мире употребил десятичные дроби, дал правила действия с ними, пояснил эти правила на примерах, подробно описал новую, открытую им систему записи дробей. Для обозначения разрядов он использовал разные варианты: отделял их вертикальной чертой, писал разными чернилами, иногда выписывал название разряда полностью словами. Потребность в упрощении записи и действий с дробями была большая. Европейские ученые искали и, на конец, нашли новый вид дробей, более простой и более удобный, В Европе впервые подробно описал десятичные дроби талантливый фламандский инженер и ученый Стевин (1548-1620). В книге “О десятой” изданной в 1585 г. , Стевин подробно описал правила действий и преимущества открытых им десятичных дробей. Стевин не был знаком с трудами ал-Каши и действительно открыл десятичные дроби. Но он открыл открытое. Первенство принадлежит Джемшиду ал-Каши, опередившему Стевина на полтора века. Теперь относительно запятой в десятичных дробях. Ставить запятую после целой части десятичной дроби предложил знаменитый немецкий ученый Кеплер (1571 1630). до Кеплера после целой части ставили нуль в скобках, напри мер, 3,7 писали как 3(0)7, отделяли вертикальной чертой 3 7 или писали разными чернилами, напри мер, целую часть числа - черными, а дробную - красными. Вот что нашла
Некоторое натурального число больше 3,обозначили буквой А. Запишите для числа А два предыдущих и три последующих натуральных числа.
Натуральные числа -числа, возникающие естественным образом при счёте (например, 1, 2, 3, 4, 5…). Каждое натуральное число отличается от предыдущего на 1
Значит Предыдущее число для А это А-1 Два предыдущих это: А-1 и А-1-1=А-2
три последующих натуральных числа А+1; А+2;А+3
Зачем дано что А>3 так как натуральные числа начинаются с 1, то если предположить, что А<3. тогда получится что A-2 уже не будет натуральным числом.
1+1*1-1:1+(1+1-1):1+1-(1+1)=1
1:1+1+1*(1+1:1-1)*1+1-1:(1+1*1-1)=1
614*905+2736:76=555706
812*35-2436:(3732-48*27)=28419