Вот они: 1 группа Рассмотрим отличающиеся только на 1 Все рядом расположенные числа:(50 и 51, 51 и 52, 52 и 53, ..., 148 и 149, 149 и 150) их 100 штук(пар)
2 группа Рассмотрим отличающиеся на 2 Их, будет меньше вдвое, так как нечетные входят Например, 50 и 52, 52 и 54, 54 и 56(и далее, последние: 146 и 148, 148 и 150) - не входят, так как всегда имеется общий делитель, равный 2, 51 и 53, 53 и 55, 55 и 57(и далее, последние: 145 и 147, 147 и 149) - входят, так как у них нету и не может быть общего делителя. их 100/4= 25 штук(пар)
Рассмотрим отличающиеся на 3 Можно показать, что они встречаются сколько раз наглядным примером: 50 и 53 52 и 55 53 и 56 55 и 58 56 и 59 далее последние: 145 и 148 146 и 149
То есть, всего пар отличающихся на 3 равно 100 пар, у которых общий делитель будет равен 3 равно 100/3=33(с лишним) То есть таких взаимно простых пар будет 100-33=67 штук(пар)
1) Если параболы имеет вершину в начале координат, то каноническое уравнение параболы имеет вид у² = 2рх.
А уравнение директрисы х + (р/2) = 0.
По заданию уравнение директрисы x+3=0 или х + (6/2) = 0.
Значит, параметр р = 6.
Уравнение параболы у² = 2*6х или у² = 12х.
2) Каноническое уравнение гиперболы имеет вид (x²/a²) - (y²/b²) = 1.
Но у неё действительная ось на оси Ох.+
Для гиперболы с действительной осью на оси Оу уравнение имеет вид -(x²/a²) + (y²/b²) = 1.
По заданию b = 4√5/2 = 2√5.
е = с/b.
Тогда c = e*b=(√5/2)*2√5 = 5.
a² = c² - b² = 25 - 20 = 5.
Уравнение гиперболы -(x²/(√5)²) + (y²/(2√5)²) = 1.
3) а = 10/2 = 5.
с = е*а = 0,6*5 = 3.
b² = a² - c² = 25 -9 = 16 = 4².
Уравнение эллипса (x²/5²) + (y²/4²) = 1.