тригонометрический круг — это самый простой способ начать осваивать тригонометрию. он легко запоминается, и на нём есть всё необходимое.тригонометрический круг заменяет десяток таблиц.
вот что мы видим на этом рисунке: перевод градусов в радианы и наоборот. полный круг содержит градусов, или радиан.значения синусов и косинусов основных углов. помним, что значение косинуса угла мы находим на оси , а значение синуса — на оси .и синус, и косинус принимают значения от до .значение тангенса угла тоже легко найти — поделив на . а чтобы найти котангенс — наоборот, косинус делим на синус.знаки синуса, косинуса, тангенса и котангенса.синус — функция нечётная, косинус — чётная.тригонометрический круг увидеть, что синус и косинус — функции периодические. период равен.
Число а - натуральное, то есть 1, 2, 3, ...
Попытаемся найти их общий делитель по алгоритму Евклида.
8a + 1 = (5a + 2)*1 + (3a - 1)
При a = 1/3 остаток равен 0, но нам это не подходит.
5a + 2 = (3a - 1)*1 + (2a + 3)
При а = -3/2 остаток равен 0, но нам это не подходит
3a - 1 = (2a + 3)*1 + (a - 4)
При а = 4 остаток равен 0, и нам это подходит. Тогда дробь
(5*4 + 2)/(8*4 + 1) = 22/33 = 2/3. Сократили на 11.
Пусть a =/= 4
2a + 3 = (a - 4)*1 + (a + 7)
При а = -7 остаток равен 0, но нам это не подходит.
a - 4 = (a + 7)*1 - 11
Этот остаток уже никогда не будет равен 0.
ответ: единственный случай - это а = 4, сокращаем на 11.