Для начала поработаем со вторым выражением. Первые три слагаемых свернем в квадрат разности:
; В следующих двух слагаемых вынесем общий множитель "40":
; В итоге получим следующее уравнение:
. В скобках мы видим похожие выражения, отличающиеся лишь знаком посередине (такие выражение называются сопряженными). А хотелось бы видеть там равные (строго говоря тождественные) выражения. Пусть в первой скобке вместо
будет стоять
; Это приведет к тому, что придется убавить
; В итоге:
; Слева стоит квадрат суммы. Уравнение примет вид:
; Сворачивая еще раз:
; Получаем серию прямых:
; А теперь приступим к рассмотрению первого уравнения.
Это уравнение задает круг с центром в точке (0, 0) и радиусом
; Рассмотрим прямую
; Найдем радиус окружности с центром в начале координат, которая касается данной прямой. Это легко сделать из подобия треугольников.
; Значит, круг касается всех этих четырех прямых. Достаточно найти только координаты касания с любой из прямых. Это делается так же, как и находился радиус окружности. Для той же прямой это координаты
; Ну а все решения:

Пусть ширина окантовки х см, тогда ширина картинки с окантовкой равна (11 + х) см, длина - (33 + х) см, а площадь - (х + 11)(х + 33) см². Т.к. площадь по условию равна 779 см², то составим и решим уравнение
(11 + х)(33 + х) = 779,
363 + 11х + 33х + х² = 779,
х² + 44х + 363 = 779,
х² = 44х + 363 - 779 = 0,
х² + 44х - 416 = 0.
D = 44² - 4 · 1 · (-416) = 1936 + 1664 = 3600; √3600 = 60.
х₁ = (-44 - 60)/(2 · 1) < 0 - не подходит по условию задачи
x₂ = (-44 + 60)/(2 · 1) = 16/2 = 8
Значит, ширина окантовки равна 8 см.
ответ: 8 см.
|2x+6|-5x
|2×(-5)+6|-5
|-10+6|-5
|-4|-5
4-5
-1