М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
zilola3
zilola3
10.03.2022 20:36 •  Математика

Вычислите и округлите полученные результаты. 1.Округлите до десяти
2.Округлите до сотни
3.Окркглите до тысячи
Задание 42.


Вычислите и округлите полученные результаты. 1.Округлите до десяти 2.Округлите до сотни 3.Окркглите

👇
Ответ:
vitm1
vitm1
10.03.2022

1. 228-5=223(округление до 220)

2. 117+12=119(округление до 120)

3.542-181= 361(округление 400)

4.1420+580=2000(так и будет 2000)

5.3736-757=2999( округление до 3000)

6.2504 +516 = 3020 (округление до 3000)

Пошаговое объяснение:

я так понял)

4,4(16 оценок)
Открыть все ответы
Ответ:
ZHICH
ZHICH
10.03.2022
Чтобы найти площадь равностороннего треугольника, нужно знать длину его стороны. В данном случае, у нас задан периметр треугольника, а периметр равностороннего треугольника вычисляется по формуле P = 3s, где P - периметр, а s - длина стороны.

Таким образом, чтобы найти длину стороны треугольника, мы можем поделить периметр на 3: s = P/3 = 114/3 = 38.

Теперь мы знаем длину стороны равностороннего треугольника - 38. Чтобы найти площадь треугольника, мы можем использовать формулу площади равностороннего треугольника:

S = (s^2 * sqrt(3)) / 4,

где s - длина стороны треугольника, и sqrt(3) - корень из 3.

Подставляем значения в формулу:

S = (38^2 * sqrt(3)) / 4 = (1444 * sqrt(3)) / 4 = 361 * sqrt(3).

Таким образом, площадь равностороннего треугольника, деленная на корень из 3, равна 361.
4,5(68 оценок)
Ответ:
stanislove777
stanislove777
10.03.2022
Добро пожаловать в класс математики! Рассмотрим данную задачу шаг за шагом, чтобы разобраться, как найти значение k.

Шаг 1: Вначале нам необходимо разобраться, какие векторы мы имеем и что они представляют. В данной задаче у нас есть несколько векторов:

- AB1, который является направленным от точки A к точке B1.
- AD, который является направленным от точки A к точке D.
- CM, который является направленным от точки C к точке M.
- AC1, который является направленным от точки A к точке C1.

Шаг 2: Далее, давайте разберемся с тем, что означают точки, упоминавшиеся в векторах:
- A и B1 являются вершинами основания ABCDA1B1C1D1 параллелепипеда.
- C и C1 являются вершинами противоположного основания ABCDA1B1C1D1 параллелепипеда.
- M является точкой, которая является серединой диагонали AC1 параллелепипеда.

Шаг 3: Теперь мы можем записать равенство A1B1(вектор) + AD(вектор) + CM(вектор) = k × AC1(вектор) в координатной форме. Для этого у нас есть два варианта:

1) Воспользуемся определением векторов. Если A(x1, y1, z1), B1(x2, y2, z2), D(x3, y3, z3), C(x4, y4, z4), C1(x5, y5, z5) и M(x6, y6, z6), то мы можем записать каждый вектор в виде разности координат:
A1B1 = (x2 - x1, y2 - y1, z2 - z1)
AD = (x3 - x1, y3 - y1, z3 - z1)
CM = (x6 - x4, y6 - y4, z6 - z4)
AC1 = (x5 - x1, y5 - y1, z5 - z1)

Подставим эти значения в равенство и получим:
(x2 - x1, y2 - y1, z2 - z1) + (x3 - x1, y3 - y1, z3 - z1) + (x6 - x4, y6 - y4, z6 - z4) = k × (x5 - x1, y5 - y1, z5 - z1)

Затем, разложим полученное равенство по осям x, y, z:
x2 - x1 + x3 - x1 + x6 - x4 = k × (x5 - x1)
y2 - y1 + y3 - y1 + y6 - y4 = k × (y5 - y1)
z2 - z1 + z3 - z1 + z6 - z4 = k × (z5 - z1)

Теперь вы можете решить получившуюся систему уравнений для определения значений координат точек и k.

2) Разложим вектора по базису (координатные оси). Для этого предположим, что базисом являются векторы i, j и k. Зная координаты точек A, B1, D, C, C1 и M, мы можем записать вектора в базисе:
A1B1 = (x2 - x1)i + (y2 - y1)j + (z2 - z1)k
AD = (x3 - x1)i + (y3 - y1)j + (z3 - z1)k
CM = (x6 - x4)i + (y6 - y4)j + (z6 - z4)k
AC1 = (x5 - x1)i + (y5 - y1)j + (z5 - z1)k

Затем, подставим эти значения в равенство и получим:
[(x2 - x1)i + (y2 - y1)j + (z2 - z1)k] + [(x3 - x1)i + (y3 - y1)j + (z3 - z1)k] + [(x6 - x4)i + (y6 - y4)j + (z6 - z4)k] = k × [(x5 - x1)i + (y5 - y1)j + (z5 - z1)k]

Затем, соберем коэффициенты при каждой из букв (i, j, k):
(x2 - x1 + x3 - x1 + x6 - x4)i + (y2 - y1 + y3 - y1 + y6 - y4)j + (z2 - z1 + z3 - z1 + z6 - z4)k = k × (x5 - x1)i + k × (y5 - y1)j + k × (z5 - z1)k

Путем сравнения коэффициентов при каждой из букв, мы можем получить систему уравнений и решить ее для определения значений координат точек и k.

Надеюсь, эта подробная методика поможет вам понять и решить данную задачу. Удачи!
4,8(27 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ