М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Noooo123456
Noooo123456
20.05.2021 14:58 •  Математика

В цветнике растут только ирисы ,розы и лилии .Их количеству относятся как 3:4:5 соответственно . Всего в цветнике 60растений .Сколько роз растут в цветнике¿

👇
Ответ:
маьтвор
маьтвор
20.05.2021

20 роз

Пошаговое объяснение:

3+4+5= 12 частей

60:12=5 растений относится к одной части

4×5= 20 роз

4,8(48 оценок)
Ответ:
Helpmepleasewith
Helpmepleasewith
20.05.2021

ответ: 20 роз растут в цветнике

Пошаговое объяснение:

Пусть целая часть - х, тогда соотношение будет 3х, 4х, 5х,

3х+4х+5х=60

12х=60

х=5

3х=3*5=15 ирисы

4х=4*5= 20 розы

5х=5*5=25 лилии

Проверка: 15+20+25=60

4,6(65 оценок)
Открыть все ответы
Ответ:
владa2368
владa2368
20.05.2021

7981

Пошаговое объяснение:

Последнюю цифру неизвестного множителя обозначим через x. Тогда, чтобы получилось число, оканчивающееся на 2019, процесс умножения можно представит в виде:

           ₓ9999

          x

           9

         

          . . .

             

   2019

Последней цифрой в произведении 9999·x будет 9, если цифра x=1.

Теперь предпоследнюю цифру неизвестного множителя обозначим через y.

Тогда, чтобы получилось число, оканчивающееся на 2019, процесс умножения можно представит в виде:

           ₓ9999

          y1

             9999

         

          . . .

             

   2019

В сумме цифр 9+* в единичном разряде получится 1, тогда когда *=2. Но только в случае 9·8=72 в единичном разряде получится 2.  Отсюда y=8.

Теперь 3-ю цифру справа неизвестного множителя обозначим через z.

Тогда, чтобы получилось число, оканчивающееся на 2019, процесс умножения можно представит в виде:

           ₓ9999

          z81

            9999

        79992

     

          . . .

             

   2019

В сумме цифр (так как  9+2=11, цифра 1 из десятичного разряде переходит следующий разряд) 9+9+1+*=19+* в единичном разряде получится 0, тогда когда *=1. Но только в случае 9·9=81 в единичном разряде получится 1.  Отсюда z=9.

Теперь 4-ю цифру справа неизвестного множителя обозначим через v.

Тогда, чтобы получилось число, оканчивающееся на 2019, процесс умножения можно представит в виде:

           ₓ9999

          ***t981

            9999

        79992

      89991

 

         . . .

       

   2019

В сумме цифр (так как  9+9+1+1=20, цифра 2 из десятичного разряде переходит следующий разряд) 9+9+9+2+*=29+* в единичном разряде получится 2, тогда когда *=3. Но только в случае 9·7=63 в единичном разряде получится 3.  Отсюда v=7.

Получили число, оканчивающееся на 2019 и поэтому процесс поиска можно останавливать!

Процесс умножения можно представит в виде:

           ₓ9999

            7981

            9999

        79992

      89991

   69993          

  2019

В силу этого заключаем, что наименьшее натуральное число, которое при умножении на 9999 даёт число, оканчивающееся на 2019 - это 7981.

4,4(79 оценок)
Ответ:
anickava
anickava
20.05.2021

7981

Пошаговое объяснение:

Последнюю цифру неизвестного множителя обозначим через x. Тогда, чтобы получилось число, оканчивающееся на 2019, процесс умножения можно представит в виде:

           ₓ9999

          x

           9

         

          . . .

             

   2019

Последней цифрой в произведении 9999·x будет 9, если цифра x=1.

Теперь предпоследнюю цифру неизвестного множителя обозначим через y.

Тогда, чтобы получилось число, оканчивающееся на 2019, процесс умножения можно представит в виде:

           ₓ9999

          y1

             9999

         

          . . .

             

   2019

В сумме цифр 9+* в единичном разряде получится 1, тогда когда *=2. Но только в случае 9·8=72 в единичном разряде получится 2.  Отсюда y=8.

Теперь 3-ю цифру справа неизвестного множителя обозначим через z.

Тогда, чтобы получилось число, оканчивающееся на 2019, процесс умножения можно представит в виде:

           ₓ9999

          z81

            9999

        79992

     

          . . .

             

   2019

В сумме цифр (так как  9+2=11, цифра 1 из десятичного разряде переходит следующий разряд) 9+9+1+*=19+* в единичном разряде получится 0, тогда когда *=1. Но только в случае 9·9=81 в единичном разряде получится 1.  Отсюда z=9.

Теперь 4-ю цифру справа неизвестного множителя обозначим через v.

Тогда, чтобы получилось число, оканчивающееся на 2019, процесс умножения можно представит в виде:

           ₓ9999

          ***t981

            9999

        79992

      89991

 

         . . .

       

   2019

В сумме цифр (так как  9+9+1+1=20, цифра 2 из десятичного разряде переходит следующий разряд) 9+9+9+2+*=29+* в единичном разряде получится 2, тогда когда *=3. Но только в случае 9·7=63 в единичном разряде получится 3.  Отсюда v=7.

Получили число, оканчивающееся на 2019 и поэтому процесс поиска можно останавливать!

Процесс умножения можно представит в виде:

           ₓ9999

            7981

            9999

        79992

      89991

   69993          

  2019

В силу этого заключаем, что наименьшее натуральное число, которое при умножении на 9999 даёт число, оканчивающееся на 2019 - это 7981.

4,5(11 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ