ответ: 80.
Пошаговое объяснение:
Так как выражение под знаком корня должно быть неотрицательным, то прежде всего должно выполняться неравенство ln [cos(5*π*x)]≥0. Но так как при любом значении x cos(5*π*x)≤1, то возможно только равенство ln[cos(5*π*x)]=0. Решая уравнение cos(5*π*x)=1, находим 5*π*x=2*π*n, где n∈Z. Отсюда x=2*n/5. Возвращаясь теперь к исходному неравенству и подставляя туда значение x=2*n/5, получаем неравенство /8*n²/25-8*n+37/≤5, которое приводится к виду n²-25*n+100≤0, или (n-20)*(n-5)≤0. Решая это неравенство методом интервалов, находим 5≤n≤20, то есть n может быть любым натуральным числом от 5 до 20. Тогда решения неравенства можно записать в виде x=2*n/5, где n∈[5;20] и n∈Z. Сумма же всех решений S=2/5*(5+6+...+20)=2/5*200=80.
Скорость катера в стоячей воде 39,4 км/час.
Пошаговое объяснение:
Скорость катера в стоячей воде называют также собственной скоростью катера. Она равна разности между скоростью катера по течению и скоростью течения реки.
По условию, V по течению=41,7 км/ч
V течения реки=2,3 км/час, следова-
тельно скорость катера в стоячей
воде равна 41,7-2,3=39,4 км/час.
С 2-ым вопросом непонятно, потому что ответ на него есть в условии задачи. Может нужно узнать скорость катера против течения реки. Тогда от скорости в стоячей воде нужно отнять скорость течения реки, то есть
V против течения=39,4-2,3=37,1 км/ч.