Пусть Антон набрал а Борис - b Владимир - c Геннадий - d
Составим по условию неравенства и равенство:
a > b + c => a > b и a > c a + b = c + d b + d > a + c
От последнего неравенства отнимем равенство: b + d - a - b > a + c - c - d d - a > a - d 2d > 2a d > a, т.к. a>b и a>c, то d - самое большое a - на втором месте, осталось выяснить, что больше b или c
сложим последнее неравенство и равенство: a + b + b + d > a + c + c + d 2b > 2c b > c
Пусть Антон набрал а Борис - b Владимир - c Геннадий - d
Составим по условию неравенства и равенство:
a > b + c => a > b и a > c a + b = c + d b + d > a + c
От последнего неравенства отнимем равенство: b + d - a - b > a + c - c - d d - a > a - d 2d > 2a d > a, т.к. a>b и a>c, то d - самое большое a - на втором месте, осталось выяснить, что больше b или c
сложим последнее неравенство и равенство: a + b + b + d > a + c + c + d 2b > 2c b > c
Нет.
Пошаговое объяснение:
Если сумма цифр, составляющих число, делится на 3 и на 9, то при делении этого числа на 3 и на 9 остатка не бывает.
315:3=105
315:9=35