Известные значения переносим на одну сторону, а неизвестные на другую сторону. При переносе значений, их знаки меняются на противоположный знак. То есть получаем:
x = 0 + 1 ;
x = 1 ;
2 ) x ^ 2 - 2 * x - 2 = 0 ;
Найдем дискриминант квадратного уравнения:
D = b ^ 2 - 4ac = (-2) ^ 2 - 4·1·(-2) = 4 + 8 = 12;
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
Функция f(x)=3x²-x³ 1. Область определения - нет ограничений D(f) = R. 2.Точки пересечения графика с осями координат. При х = 0, у = 0 точка пересечения с осью Оу. При 3x²-x³ = 0, x²(3 - х) = 0 есть 2 точки пересечения с осью Ох: х = 0 и х = 3. 3.Промежутки возрастания и убывания. Находим производную функции и приравниваем её 0: f'(3x²-x³) = 6x - 3x² = 3x(2 - x) = 0. Нашли 2 критические точки: х = 0 и х = 2. Находим знаки производной вблизи критических точек: х = -0.5 0 1.5 2 2.5 у' =6x - 3x² = -3.75 0 2.25 0 -3.75 . Где производная отрицательна - там функция убывает, где производная положительна - функция возрастает. x < 0 и x > 2 функция убывает, 0 < x < 2 функция возрастает.
4.Экстремумы видны по пункту 3. Где производная меняет знак с - на + там минимум, где с + на - там максимум: х = 0 минимум, х = 2 максимум.
Пошаговое объяснение:
x ^ 3 - 3 * x ^ 2 + 2 = 0 ;
( x - 1 ) * ( x ^ 2 - 2 * x - 2 ) = 0 ;
1 ) x - 1 = 0 ;
Известные значения переносим на одну сторону, а неизвестные на другую сторону. При переносе значений, их знаки меняются на противоположный знак. То есть получаем:
x = 0 + 1 ;
x = 1 ;
2 ) x ^ 2 - 2 * x - 2 = 0 ;
Найдем дискриминант квадратного уравнения:
D = b ^ 2 - 4ac = (-2) ^ 2 - 4·1·(-2) = 4 + 8 = 12;
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = ( 2 - √12 ) / ( 2·1 ) = 1 - √3 ≈ -0.732;
x2 = ( 2 + √12) / ( 2·1 ) = 1 + √3 ≈ 2.732;
ответ: х = 1, х = 1 - √3 и х = 1 + √3.