Уколи были трехкопеечные и пятикопеечные монеты всего на сумму 36 копеек. сколько монет каждого вида было у коли если трехкопеечных монет было на 4 больше чем пятикопеечных. решить системой уравнений
было в 2-х б. 720 л; доб.в 1-ю 10 %; доб. во 2-ю 15 %; всего доб. 80 л; 1-я б. ---? л; 2-я б. --- ? л Решение. 10 % = 10/100 = 0,1:; 15 % = 15/100 = 0,15 Х л количество молока во второй бочке; (720 - Х) л количество молока в первой бочке. Х * 15 % = 0,15Х (л) добавлено во вторую бочку; (720 - Х) * 10 % = (72 - 0,1Х) (л) добавлено в первую бочку; 0,15Х + 72 - 0,1Х = 80 по условию; 0,05Х = 8; Х = 8 : 0,05 = 160 (л) было во второй бочке; 720 - 160 = 560 (л) было в первой бочке. ответ: 560 л молока было в первой бочке и 160 во второй. Проверка: 160*15% + 560*10% = 80; 80 = 80
1) Находим область определения: вся числовая ось, кроме х = -5 / 4 (при этом значении знаменатель превращается в ноль). 2) Находим точки пересечения с осями: х = 0 у = -3/5 это точка пересечения с осью у. у = 0 надо числитель приравнять 0: 2х - 3 = 0 х = 3/2 это точка пересечения с осью х. 3) Исследуем функцию на парность или непарность: Функция называется парной, если для любого аргумента с его областью обозначения будет f(-x)=f(x), или же непарной - если для любого аргумента с областью обозначения будет f(-x)=-f(x). К тому же, график парной функции будет симметричным относительно оси ординат, а график непарной - симметричным относительно точки (0;0). Правда, чаще встречается название этих свойств функции как чётность и нечётность. 2*x - 3 -3 - 2*x ---------- = ---------- 1 1 (4*x + 5) (5 - 4*x) - Нет 2*x - 3 -3 - 2*x ---------- = - ---------- 1 1 (4*x + 5) (5 - 4*x) - Нет, значит, функция не является ни чётной, ни нечётной. 4) Исследуем функцию на монотонность: — это значит выяснить, на каких промежутках области определения функция возрастает, а на каких убывает. Если производная положительна, то функция возрастает и наоборот. . Так как переменная в квадрате, то производная всегда положительна, а функция возрастающая на всей числовой оси (кроме х = -5/4). 5) Находим экстремумы функции: Так как переменная находится в знаменателе, то производная не может быть равна нулю. Следовательно, функция не имеет ни максимума, ни минимума. 6) Исследуем функции на выпуклость, вогнутость: Если вторая производная меньше нуля, то функция выпуклая, если производная больше нуля - то функция вогнутая. Вторая производная равна . При x > (-5/4) функция выпуклая, при x < (-5/4) функция вогнута. 7) Находим асимптоты графика функции: Горизонтальные асимптоты найдём с пределов данной функции при x->+oo и x->-oo 2*x - 3 lim ------- = 1/2 x->-oo4*x + 5 значит,уравнение горизонтальной асимптоты слева:y = 1/2 2*x - 3 lim ------- = 1/2 x->oo4*x + 5 значит,уравнение горизонтальной асимптоты справа:y = 1/2Наклонные асимптотыНаклонную асимптоту можно найти, подсчитав предел функции (2*x - 3)/(4*x + 5), делённой на x при x->+oo и x->-oo 2*x - 3 lim ----------- = 0 x->-oox*(4*x + 5) значит,наклонная совпадает с горизонтальной асимптотой справа 2*x - 3 lim ----------- = 0 x->oox*(4*x + 5) значит,наклонная совпадает с горизонтальной асимптотой слева 8) Можно найти дополнительные точки и построить график График и таблица точек приведены в приложении.
7 - трехкопеечных и 3 - пятикопеечные
Пошаговое объяснение:
пусть 3-хкоп - х монет, 5-икоп - у
по условию:
{x = y + 4
{3x + 5y = 36
{x = y + 4
{3y + 12 + 5y = 36
{x = y + 4
{8y = 24
{y = 3
{x = 7